METHODOLOGY/PRINCIPAL FINDINGS: We assessed oral susceptibility of Malaysian Ae. aegypti and Ae. albopictus by real-time PCR to an Australian RRV strain SW2089. Replication kinetics in midgut, head and saliva were determined at 3 and 10 days post-infection (dpi). With a 3 log10 PFU/ml blood meal, infection rate was higher in Ae. albopictus (60%) than Ae. aegypti (15%; p<0.05). Despite similar infection rates at 5 and 7 log10 PFU/ml blood meals, Ae. albopictus had significantly higher viral loads and required a significantly lower median oral infectious dose (2.7 log10 PFU/ml) than Ae. aegypti (4.2 log10 PFU/ml). Ae. albopictus showed higher vector competence, with higher viral loads in heads and saliva, and higher transmission rate (RRV present in saliva) of 100% at 10 dpi, than Ae. aegypti (41%). Ae. aegypti demonstrated greater barriers at either midgut escape or salivary gland infection, and salivary gland escape. We then assessed seropositivity against RRV among 240 Kuala Lumpur inpatients using plaque reduction neutralization, and found a low rate of 0.8%.
CONCLUSIONS/SIGNIFICANCE: Both Ae. aegypti and Ae. albopictus are susceptible to RRV, but Ae. albopictus displays greater vector competence. Extensive travel links with Australia, abundant Aedes vectors, and low population immunity places Kuala Lumpur, Malaysia at risk of an imported RRV outbreak. Surveillance and increased diagnostic awareness and capacity are imperative to prevent establishment of new arboviruses in Malaysia.
MATERIALS AND METHODS: A prospective cohort study of cancer patients and healthy individuals receiving vaccines was conducted in Malaysia. All participants were aged 18 or above at recruitment and received at least two doses of vaccine. We excluded patients who had missing serum antibody data post-first dose and post-second dose. Sociodemographic and clinical data were collected at baseline, prior to vaccination. Data on self-reported breakthrough infection was collected at six months. Multivariable linear mixed-effects regression models were used to investigate the association between the type of vaccine and serum IgG titer.
RESULTS: A total of 389 patients with solid (n=276, 71.0%) or hematologic cancers (n=113, 29.0%) were included, along with 246 healthy individuals. Most cancer patients received BNT162b2 (n=358, 92.0%), followed by AZ1222 (n=19, 4.9%) and Coronavac (n=12, 3.1%). Most healthy individuals received BNT162b2 (n=151, 61.4%), followed by Coronavac (n=95, 38.6%). Vaccination, after adjustment for confounders (pre-vaccine infection, age, ethnicity, comorbidity, timepoint, income, cancer type, and booster), with Coronavac was associated with lower log IgG titer (-3.09 U/ml, 95% confidence interval=-4.37 to -1.80, p<0.01) than that of BNT162b2 in patients with cancer and also lower log IgG titer (-2.64 U/ml, 95% confidence interval=-2.97 to -2.30, p<0.01) than that of BNT162b2 in healthy individuals. No effect modification by sex was observed. Among the cancer cohort, 76 patients (19.5%) reported breakthrough infections after vaccination, while 33 (13.4%) participants in the healthy cohort reported breakthrough infections after vaccination. Coronavac was associated with greater odds of breakthrough infection among healthy individuals (odds ratio=7.34 compared to BNT162b2, confidence interval=1.40 to 33.49, p=0.02).
CONCLUSION: Vaccination with BNT162b2 yields higher IgG titer than Coronavac in all groups and fewer breakthrough infections in healthy subjects. The effect of vaccination is not modified by sex.
METHODS: COVID-19 samples that tested positive by reverse transcription polymerase chain reaction and with cycle threshold values <30 were obtained throughout Malaysia. Sequencing of SARS-CoV-2 complete genomes was performed using Illumina, Oxford Nanopore, or Ion Torrent platforms. A total of 6163 SARS-CoV-2 complete genome sequences were generated over the surveillance period. All sequences were submitted to the Global Initiative on Sharing All Influenza Data database.
RESULTS: From June 2021 to January 2022, Malaysia experienced the fourth wave of COVID-19 dominated by the Delta variant of concern, including the original B.1.617.2 lineage and descendant AY lineages. The B.1.617.2 lineage was identified as the early dominant circulating strain throughout the country but over time, was displaced by AY.59 and AY.79 lineages in Peninsular (west) Malaysia, and the AY.23 lineage in east Malaysia. In December 2021, pilgrims returning from Saudi Arabia facilitated the introduction and spread of the BA.1 lineage (Omicron variant of concern) in the country.
CONCLUSION: The changing trends of circulating SARS-CoV-2 lineages were identified, with differences observed between west and east Malaysia. This initiative highlighted the importance of leveraging research expertise in the country to facilitate pandemic response and preparedness.