Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Abd Razak NA, Abu Osman NA, Kamyab M, Wan Abas WA, Gholizadeh H
    Am J Phys Med Rehabil, 2014 May;93(5):437-44.
    PMID: 24429510 DOI: 10.1097/PHM.0b013e3182a51fc2
    This report compares wrist supination and pronation and flexion and extension movements with the common body-powered prosthesis and a new biomechatronics prosthesis with regard to patient satisfaction and problems experienced with the prosthesis. Fifteen subjects with traumatic transradial amputation who used both prosthetic systems participated in this study. Each subject completed two questionnaires to evaluate their satisfaction and problems experienced with the two prosthetic systems. Satisfaction and problems with the prosthetic's wrist movements were analyzed in terms of the following: supination and pronation; flexion and extension; appearance; sweating; wounds; pain; irritation; pistoning; smell; sound; durability; and the abilities to open a door, hold a cup, and pick up or place objects. This study revealed that the respondents were more satisfied with the biomechatronics wrist prosthesis with regard to supination and pronation, flexion and extension, pain, and the ability to open a door. However, satisfaction with the prosthesis showed no significant differences in terms of sweating, wounds, irritation, pistoning, smell, sound, and durability. The abilities to hold a cup and pick up or place an object were significantly better with the body-powered prosthesis. The results of the survey suggest that satisfaction and problems with wrist movements in persons with transradial amputation can be improved with a biomechatronics wrist prosthesis compared with the common body-powered prosthesis.
  2. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014;13:134.
    PMID: 25208636 DOI: 10.1186/1475-925X-13-134
    Understanding of kinematics force applied at the elbow is important in many fields, including biomechanics, biomedical engineering and rehabilitation. This paper provides a comparison of a mathematical model of elbow joint using three different types of prosthetics for transhumeral user, and characterizes the forces required to overcome the passive mechanical of the prosthetics at the residual limb.
  3. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014 Apr 23;13:49.
    PMID: 24755242 DOI: 10.1186/1475-925X-13-49
    BACKGROUND: The design and performance of a new development prosthesis system known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis system was implemented by replacing the Bowden tension cable of body powered prosthesis system using two ultrasonic sensors, two servo motors and microcontroller inside the prosthesis hand for transradial user.

    METHODS: The system components and hand prototypes involve the anthropometry, CAD design and prototyping, biomechatronics engineering together with the prosthetics. The modeler construction of the system develop allows the ultrasonic sensors that are placed on the shoulder to generate the wrist movement of the prosthesis. The kinematics of wrist movement, which are the pronation/supination and flexion/extension were tested using the motion analysis and general motion of human hand were compared. The study also evaluated the require degree of detection for the input of the ultrasonic sensor to generate the wrist movements.

    RESULTS: The values collected by the vicon motion analysis for biomechatronics prosthesis system were reliable to do the common tasks in daily life. The degree of the head needed to bend to give the full input wave was about 45°-55° of rotation or about 14 cm-16 cm. The biomechatronics wrist prosthesis gave higher degree of rotation to do the daily tasks but did not achieve the maximum degree of rotation.

    CONCLUSION: The new development of using sensor and actuator in generating the wrist movements will be interesting for used list in medicine, robotics technology, rehabilitations, prosthetics and orthotics.

  4. Abu Osman NA, Eshraghi A, Gholizadeh H, Wan Abas WAB, Lechler K
    Prosthet Orthot Int, 2017 Dec;41(6):571-578.
    PMID: 28190376 DOI: 10.1177/0309364617690397
    OBJECTIVES: To develop a questionnaire that specifically evaluates the ability of trans-tibial amputees to don and doff a prosthesis and to investigate the psychometric properties of the newly developed questionnaire.

    BACKGROUND: Prosthesis should be donned and doffed few times during the day and night; thus, it is important to measure ease of donning and doffing.

    STUDY DESIGN: A cross-sectional study.

    METHODS: The questionnaire was designed and evaluated by a group of experts. The final questionnaire was administered to 50 individuals with trans-tibial amputation. A test-retest study was also conducted on 20 amputees to assess the repeatability of questionnaire items.

    RESULTS: The prosthesis donning and doffing questionnaire was developed and tested through a pilot study. Based on Kappa index, the questionnaire items showed correlation coefficients greater than 0.7, which indicate good reliability and repeatability. The majority of the participants had good hand dexterity (80%) and could perform all types of grasps. The mean satisfaction scores with donning and doffing were 69.9 and 81.4, respectively. Most of the respondents needed to don and doff the prosthesis 3.44 times per day. Based on a 7-point score, the total scores ranged between 3 and 7.

    CONCLUSION: The prosthesis donning and doffing questionnaire items showed good psychometric properties. A scoring method was suggested based on the pilot sample, which requires further evaluation to be able to differentiate between more suspension types. A larger international multicenter evaluation is required in the future to measure the responsiveness of the scales. This questionnaire will be useful in the evaluation of the ability of amputees to don and doff a trans-tibial limb prosthesis. Clinical relevance Donning and doffing of prostheses are challenging tasks for many lower limb amputees. The prosthesis donning and doffing questionnaire, on its own or combined with other prosthetic evaluation questionnaires, has the potential to help manufacturers, clinicians, and researchers gain knowledge and improve the donning and doffing qualities of prostheses.

  5. Abu Osman NA, Gholizadeh H, Eshraghi A, Wan Abas WAB
    Prosthet Orthot Int, 2017 Oct;41(5):476-483.
    PMID: 28946824 DOI: 10.1177/0309364616670396
    OBJECTIVES: This study aimed to evaluate and compare a newly designed suspension system with a common suspension in the market.

    STUDY DESIGN: Prospective study.

    METHODS: Looped liners with hook fastener and Iceross Dermo Liner with pin/lock system were mechanically tested using a tensile testing machine in terms of system safety. A total of 10 transtibial amputees participated in this study and were asked to use these two different suspension systems. The pistoning was measured between the liner and socket through a photographic method. Three static axial loading conditions were implemented, namely, 30, 60, and 90 N. Furthermore, subjective feedback was obtained.

    RESULTS: Tensile test results showed that both systems could safely tolerate the load applied to the prosthesis during ambulation. Clinical evaluation confirmed extremely low pistoning in both systems (i.e. less than 0.4 cm after adding 90 N traction load to the prosthesis). Subjective feedback also showed satisfaction with both systems. However, less traction at the end of the residual limb was reported while looped liner was used.

    CONCLUSION: The looped liner with hook fastener is safe and a good alternative for individuals with transtibial amputation as this system could solve some problems with the current systems. Clinical relevance The looped liner and hook fastener were shown to be good alternative suspension for people with lower limb amputation especially those who have difficulty to use and align the pin/lock systems. This system could safely tolerate centrifugal forces applied to the prosthesis during normal and fast walking.

  6. Afiqah Hamzah N, Razak NAA, Sayuti Ab Karim M, Gholizadeh H
    Proc Inst Mech Eng H, 2021 Dec;235(12):1359-1374.
    PMID: 34304625 DOI: 10.1177/09544119211035200
    The development of the CAD/CAM (Computer-aided design and computer-aided manufacturing) system has globally changed the fabrication and delivery of prosthetics and orthotics. Furthermore, since the introduction of CAD/CAM in the 1980s, many successful CAD/CAM system are available in the market today. However, less than 20% of amputees have access to digital fabrication technology and large portion of the amputees are from the developing countries. This review designed to examine selected studies from 1980 to 2019 on CAD/CAM systems in the production of transtibial prosthetic sockets. A review was conducted based on articles gathered from Web of Science, Pubmed and Science Direct. From the findings, 92 articles found related to CAD/CAM-derived transtibial prosthetic socket (TPS). After a further screening of the articles, 20 studies were chosen and only one study was done in a developing country. The results showed an increase interest in CAD/CAM application in Transtibial prosthetic socket (TPS) production for both developed and developing countries, yet the technology has not fully utilised in the developing countries. Factors such as resources, accessibility, knowledge-gap and lack of experienced prosthetists remain the major causes of the lack of CAD/CAM system studies. Large-scale trials are required to employ digital fabrication in the developing regions, consequently advancing the production of high-quality CAD-CAM-derived TPS where most prosthetic and orthotics are needed.
  7. Ali S, Abu Osman NA, Arifin N, Gholizadeh H, Abd Razak NA, Abas WA
    ScientificWorldJournal, 2014;2014:769810.
    PMID: 25184154 DOI: 10.1155/2014/769810
    This study aimed to compare the effect of satisfaction and perceived problems between Pelite, Dermo with shuttle lock, and Seal-In X5 liners on the transtibial amputees.
  8. Ali S, Abu Osman NA, Eshraghi A, Gholizadeh H, Abd Razak NA, Wan Abas WA
    Clin Biomech (Bristol, Avon), 2013 Nov-Dec;28(9-10):994-9.
    PMID: 24161521 DOI: 10.1016/j.clinbiomech.2013.09.004
    Transtibial amputees encounter stairs and steps during their daily activities. The excessive pressure between residual limb/socket may reduce the walking capability of transtibial prosthetic users during ascent and descent on stairs. The purposes of the research were to evaluate the interface pressure between Dermo (shuttle lock) and Seal-In X5 (prosthetic valve) interface systems during stair ascent and descent, and to determine their satisfaction effects on users.
  9. Ali S, Osman NA, Mortaza N, Eshraghi A, Gholizadeh H, Wan Abas WA
    Clin Biomech (Bristol, Avon), 2012 Nov;27(9):943-8.
    PMID: 22795863 DOI: 10.1016/j.clinbiomech.2012.06.004
    The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. Liners provide a comfortable interface by adding a soft cushion between the residual limb and the socket. The Dermo and the Seal-In X5 liner are two new interface systems and, due to their relative infancy, very little are known about their effect on patient satisfaction. The aim of this study was to compare the interface pressure with these two liners and their effect on patient satisfaction.
  10. Ali S, Abu Osman NA, Naqshbandi MM, Eshraghi A, Kamyab M, Gholizadeh H
    Arch Phys Med Rehabil, 2012 Nov;93(11):1919-23.
    PMID: 22579945 DOI: 10.1016/j.apmr.2012.04.024
    To investigate the effects of 3 dissimilar suspension systems on participants' satisfaction and perceived problems with their prostheses.
  11. Arifin N, Abu Osman NA, Ali S, Gholizadeh H, Abas WA
    ScientificWorldJournal, 2014;2014:856279.
    PMID: 25003155 DOI: 10.1155/2014/856279
    This study aimed to evaluate the effects of prosthetic foot types on the postural stability among transtibial amputees when standing on different support surfaces.
  12. Arifin N, Abu Osman NA, Ali S, Gholizadeh H, Wan Abas WA
    Proc Inst Mech Eng H, 2015 Jul;229(7):491-8.
    PMID: 26019139 DOI: 10.1177/0954411915587595
    In recent years, computerized posturography has become an essential tool in quantitative assessment of postural steadiness in the clinical settings. The purpose of this study was to explore the ability of the Biodex(®) Stability System (BSS) to quantify postural steadiness in below-knee amputees. A convenience sample of 10 below-knee amputees participated in the study. The overall (OSI), anterior-posterior (APSI) and medial-lateral (MLSI) stability indexes as well as the percentage of time spent in left and right quadrants and four concentric zones were measured under altered sensory conditions while standing with solid ankle cushion heel (SACH), single-axis (SA) and energy storage and release (ESAR) feet. Significant difference was found between sensory conditions in SACH and ESAR feet for OSI (SACH, p = 0.002; ESAR, p = 0.005), APSI (SACH, p = 0.036; ESAR, p = 0.003) and MLSI (SACH, p = 0.008; ESAR, p = 0.05) stability indexes. The percentage of time spent in Zone A (0°-5°) was significantly greater than the other three concentric zones (p < 0.01). The loading time percentage on their intact limb (80%-94%) was significantly longer than the amputated limb (20%-6%) in all conditions for all three prosthetic feet. Below-knee amputees showed compromised postural steadiness when visual, proprioceptive or vestibular sensory input was altered. The findings highlight that the characteristics of postural stability in amputees can be clinically assessed by utilizing the outcomes produced by the BSS.
  13. Eshraghi A, Abu Osman NA, Gholizadeh H, Ali S, Abas WA
    Am J Phys Med Rehabil, 2015 Jan;94(1):1-10.
    PMID: 24919079 DOI: 10.1097/PHM.0000000000000134
    This study aimed to compare the effects of different suspension methods on the interface stress inside the prosthetic sockets of transtibial amputees when negotiating ramps and stairs.
  14. Eshraghi A, Abu Osman NA, Karimi M, Gholizadeh H, Soodmand E, Wan Abas WA
    PLoS One, 2014;9(5):e96988.
    PMID: 24865351 DOI: 10.1371/journal.pone.0096988
    Prosthetic suspension system is an important component of lower limb prostheses. Suspension efficiency can be best evaluated during one of the vital activities of daily living, i.e. walking. A new magnetic prosthetic suspension system has been developed, but its effects on gait biomechanics have not been studied. This study aimed to explore the effect of suspension type on kinetic and kinematic gait parameters during level walking with the new suspension system as well as two other commonly used systems (the Seal-In and pin/lock). Thirteen persons with transtibial amputation participated in this study. A Vicon motion system (six cameras, two force platforms) was utilized to obtain gait kinetic and kinematic variables, as well as pistoning within the prosthetic socket. The gait deviation index was also calculated based on the kinematic data. The findings indicated significant difference in the pistoning values among the three suspension systems. The Seal-In system resulted in the least pistoning compared with the other two systems. Several kinetic and kinematic variables were also affected by the suspension type. The ground reaction force data showed that lower load was applied to the limb joints with the magnetic suspension system compared with the pin/lock suspension. The gait deviation index showed significant deviation from the normal with all the systems, but the systems did not differ significantly. Main significant effects of the suspension type were seen in the GRF (vertical and fore-aft), knee and ankle angles. The new magnetic suspension system showed comparable effects in the remaining kinetic and kinematic gait parameters to the other studied systems. This study may have implications on the selection of suspension systems for transtibial prostheses. Trial registration: Iranian Registry of Clinical Trials IRCT2013061813706N1.
  15. Eshraghi A, Osman NA, Gholizadeh H, Ali S, Shadgan B
    Biomed Eng Online, 2013;12:119.
    PMID: 24237942 DOI: 10.1186/1475-925X-12-119
    Research has tremendously contributed to the developments in both practical and fundamental aspects of limb prosthetics. These advancements are reflected in scientific articles, particularly in the most cited papers. This article aimed to identify the 100 top-cited articles in the field of limb prosthetics and to investigate their main characteristics. Articles related to the field of limb prosthetics and published in the Web of Knowledge database of the Institute for Scientific Information (ISI) from the period of 1980 to 2012. The 100 most cited articles in limb prosthetics were selected based on the citation index report. All types of articles except for proceedings and letters were included in the study. The study design and level of evidence were determined using Sackett's initial rules of evidence. The level of evidence was categorized either as a systematic review or meta-analysis, randomized controlled trial, cohort study, case-control study, case series, expert opinion, or design and development. The top cited articles in prosthetics were published from 1980 to 2012 with a citation range of 11 to 90 times since publication. The mean citation rate was 24.43 (SD 16.7) times. Eighty-four percent of the articles were original publications and were most commonly prospective (76%) and case series studies (67%) that used human subjects (96%) providing level 4 evidence. Among the various fields, rehabilitation (47%), orthopedics (29%), and sport sciences (28%) were the most common fields of study. The study established that studies conducted in North America and were written in English had the highest citations. Top cited articles primarily dealt with lower limb prosthetics, specifically, on transtibial and transradial prosthetic limbs. Majority of the articles were experimental studies.
  16. Eshraghi A, Osman NA, Gholizadeh H, Ahmadian J, Rahmati B, Abas WA
    Sci Rep, 2013;3:2270.
    PMID: 23881340 DOI: 10.1038/srep02270
    Individuals with lower limb amputation need a secure suspension system for their prosthetic devices. A new coupling system was developed that is capable of suspending the prosthesis. The system's safety is ensured through an acoustic alarm system. This article explains how the system works and provides an in vivo evaluation of the device with regard to pistoning during walking. The system was designed to be used with silicone liners and is based on the requirements of prosthetic suspension systems. Mechanical testing was performed using a universal testing machine. The pistoning during walking was measured using a motion analysis system. The new coupling device produced significantly less pistoning compared to a common suspension system (pin/lock). The safety alarm system would buzz if the suspension was going to fail. The new coupling system could securely suspend the prostheses in transtibial amputees and produced less vertical movement than the pin/lock system.
  17. Eshraghi A, Maroufi N, Sanjari MA, Saeedi H, Keyhani MR, Gholizadeh H, et al.
    Prosthet Orthot Int, 2013 Feb;37(1):76-84.
    PMID: 22751219 DOI: 10.1177/0309364612448805
    Biomechanical factors, such as spinal deformities can result in balance control disorders.
  18. Eshraghi A, Osman NA, Gholizadeh H, Karimi M, Ali S
    Prosthet Orthot Int, 2012 Mar;36(1):15-24.
    PMID: 22269941 DOI: 10.1177/0309364611431625
    One of the main indicators of the suspension system efficiency in lower limb prostheses is vertical displacement or pistoning within the socket. Decreasing pistoning and introducing an effective system for evaluating pistoning could contribute to the amputees' rehabilitation process.
  19. Eshraghi A, Abu Osman NA, Karimi MT, Gholizadeh H, Ali S, Wan Abas WA
    Am J Phys Med Rehabil, 2012 Dec;91(12):1028-38.
    PMID: 23168378 DOI: 10.1097/PHM.0b013e318269d82a
    The objectives of this study were to compare the effects of a newly designed magnetic suspension system with that of two existing suspension methods on pistoning inside the prosthetic socket and to compare satisfaction and perceived problems among transtibial amputees.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links