Displaying all 8 publications

Abstract:
Sort:
  1. Williams CR, Gill BS, Mincham G, Mohd Zaki AH, Abdullah N, Mahiyuddin WR, et al.
    Epidemiol Infect, 2015 Oct;143(13):2856-64.
    PMID: 25591942 DOI: 10.1017/S095026881400380X
    We aimed to reparameterize and validate an existing dengue model, comprising an entomological component (CIMSiM) and a disease component (DENSiM) for application in Malaysia. With the model we aimed to measure the effect of importation rate on dengue incidence, and to determine the potential impact of moderate climate change (a 1 °C temperature increase) on dengue activity. Dengue models (comprising CIMSiM and DENSiM) were reparameterized for a simulated Malaysian village of 10 000 people, and validated against monthly dengue case data from the district of Petaling Jaya in the state of Selangor. Simulations were also performed for 2008-2012 for variable virus importation rates (ranging from 1 to 25 per week) and dengue incidence determined. Dengue incidence in the period 2010-2012 was modelled, twice, with observed daily weather and with a 1 °C increase, the latter to simulate moderate climate change. Strong concordance between simulated and observed monthly dengue cases was observed (up to r = 0·72). There was a linear relationship between importation and incidence. However, a doubling of dengue importation did not equate to a doubling of dengue activity. The largest individual dengue outbreak was observed with the lowest dengue importation rate. Moderate climate change resulted in an overall decrease in dengue activity over a 3-year period, linked to high human seroprevalence early on in the simulation. Our results suggest that moderate reductions in importation with control programmes may not reduce the frequency of large outbreaks. Moderate increases in temperature do not necessarily lead to greater dengue incidence.
  2. Mansor W, Crowe JA, Woolfson M, Hayes-Gill BR, Blanchfield P, Bister M
    Conf Proc IEEE Eng Med Biol Soc, 2007 10 20;2006:1383-6.
    PMID: 17945640
    In fetal heart monitoring using Doppler ultrasound signals the cardiac information is commonly extracted from non-directional signals. As a consequence often some of the cardiac events cannot be observed clearly which may lead to the incorrect detection of the valve and wall motions. Here, directional signals were simulated to investigate their enhancement of cardiac events, and hence provide clearer information regarding the cardiac activities. First, fetal Doppler ultrasound signals were simulated with signals encoding forward and reverse motion then obtained using a pilot frequency. The simulation results demonstrate that the model has the ability to produce realistic Doppler ultrasound signals and a pilot frequency can be used in the mixing process to produce directional signals that allow the simulated cardiac events to be distinguished clearly and correctly.
  3. Agarwal A, Gupta S, Sharma RK, Finelli R, Kuroda S, Vij SC, et al.
    World J Mens Health, 2022 Jul;40(3):425-441.
    PMID: 35021311 DOI: 10.5534/wjmh.210191
    PURPOSE: The success of vasectomy is determined by the outcome of a post-vasectomy semen analysis (PVSA). This article describes a step-by-step procedure to perform PVSA accurately, report data from patients who underwent post vasectomy semen analysis between 2015 and 2021 experience, along with results from an international online survey on clinical practice.

    MATERIALS AND METHODS: We present a detailed step-by-step protocol for performing and interpretating PVSA testing, along with recommendations for proficiency testing, competency assessment for performing PVSA, and clinical and laboratory scenarios. Moreover, we conducted an analysis of 1,114 PVSA performed at the Cleveland Clinic's Andrology Laboratory and an online survey to understand clinician responses to the PVSA results in various countries.

    RESULTS: Results from our clinical experience showed that 92.1% of patients passed PVSA, with 7.9% being further tested. A total of 78 experts from 19 countries participated in the survey, and the majority reported to use time from vasectomy rather than the number of ejaculations as criterion to request PVSA. A high percentage of responders reported permitting unprotected intercourse only if PVSA samples show azoospermia while, in the presence of few non-motile sperm, the majority of responders suggested using alternative contraception, followed by another PVSA. In the presence of motile sperm, the majority of participants asked for further PVSA testing. Repeat vasectomy was mainly recommended if motile sperm were observed after multiple PVSA's. A large percentage reported to recommend a second PVSA due to the possibility of legal actions.

    CONCLUSIONS: Our results highlighted varying clinical practices around the globe, with controversy over the significance of non-motile sperm in the PVSA sample. Our data suggest that less stringent AUA guidelines would help improve test compliance. A large longitudinal multi-center study would clarify various doubts related to timing and interpretation of PVSA and would also help us to understand, and perhaps predict, recanalization and the potential for future failure of a vasectomy.

  4. Singh S, Murali Sundram B, Rajendran K, Boon Law K, Aris T, Ibrahim H, et al.
    J Infect Dev Ctries, 2020 09 30;14(9):971-976.
    PMID: 33031083 DOI: 10.3855/jidc.13116
    INTRODUCTION: The novel coronavirus infection has become a global threat affecting almost every country in the world. As a result, it has become important to understand the disease trends in order to mitigate its effects. The aim of this study is firstly to develop a prediction model for daily confirmed COVID-19 cases based on several covariates, and secondly, to select the best prediction model based on a subset of these covariates.

    METHODOLOGY: This study was conducted using daily confirmed cases of COVID-19 collected from the official Ministry of Health, Malaysia (MOH) and John Hopkins University websites. An Autoregressive Integrated Moving Average (ARIMA) model was fitted to the training data of observed cases from 22 January to 31 March 2020, and subsequently validated using data on cases from 1 April to 17 April 2020. The ARIMA model satisfactorily forecasted the daily confirmed COVID-19 cases from 18 April 2020 to 1 May 2020 (the testing phase).

    RESULTS: The ARIMA (0,1,0) model produced the best fit to the observed data with a Mean Absolute Percentage Error (MAPE) value of 16.01 and a Bayes Information Criteria (BIC) value of 4.170. The forecasted values showed a downward trend of COVID-19 cases until 1 May 2020. Observed cases during the forecast period were accurately predicted and were placed within the prediction intervals generated by the fitted model.

    CONCLUSIONS: This study finds that ARIMA models with optimally selected covariates are useful tools for monitoring and predicting trends of COVID-19 cases in Malaysia.

  5. Dapari R, Muniandy K, Fattah Azman AZ, Abu Bakar S, Mohd Desa MN, Hwa LC, et al.
    PLoS One, 2024;19(4):e0302736.
    PMID: 38687755 DOI: 10.1371/journal.pone.0302736
    BACKGROUND: Dengue is a mosquito-borne disease caused by four distinct, closely related dengue viruses (DENV). Global dengue incidence has markedly increased in the past decades. The World Health Organization reported that cases increased from 505,430 in 2000 to 5.2 million in 2019. Similarly, the total dengue cases in Malaysia increased from 7,103 in 2000 to a peak of 130,101 in 2019. Knowledge, attitude, and practice (KAP) remain the most effective dengue prevention and control tools. Furthermore, school-based health education is key to enhancing knowledge and raising awareness of the seriousness of dengue among schoolchildren and transferring knowledge and practice from classrooms to homes. Thus, it is necessary to plan an integrated module for the primary prevention of dengue infection, specifically among schoolchildren.

    AIMS: The present study intends to develop, implement, and evaluate the effectiveness of a theory-based integrated dengue education and learning (iDEAL) module in improving the KAP, environmental cleanliness index, and dengue index among schoolchildren in Selangor and Kuala Lumpur.

    METHODS: This study is a single-blinded, cluster randomised controlled trial to be conducted from 1 September 2023 to 31 August 2025. The study will involve 20 primary and 20 secondary schools in Selangor and Kuala Lumpur. The 1600 participants will be randomly allocated to intervention and control groups based on selected clusters to avoid contamination. A cluster is a comparable school that fulfils the inclusion and exclusion criteria. The intervention group will receive the iDEAL module, while the control group will receive standard education. The iDEAL module will be developed following a systematic procedure and delivered in-person by trained researchers to the participants. The outcome will be measured using validated, self-administered questionnaires at baseline (T0), immediately (T1), one month (T2), and three months (T3) post-intervention to measure the intervention module effectiveness. The data will be analysed using IBM Statistical Package for Social Science (SPSS) version 28 and descriptive and inferential statistics. Within-group changes over time will be compared using one-way repeated measure analysis of variance for continuous and normally distributed variables. Within-group analysis of categorical data will use Cochran's Q test. The main effect and interaction between and within the intervention and control groups at T0, T1, T2, and T3 will be tested using the generalised linear mixed model (GLMM). Hypothetically, the KAP, environmental cleanliness index, and dengue index among the intervention group will be significantly improved compared to the control group. The hypothesis will be tested using a significance level with a p-value of 0.05 and a confidence interval of 95%.

    CONCLUSIONS: The study protocol outlines developing and testing an iDEAL module for schoolchildren in Selangor and Kuala Lumpur, with no socio-demographic differences expected. The intervention aims to improve KAP, environmental cleanliness index, and dengue index, potentially reducing dengue risk. Results could inform public health policies, emphasizing school-based interventions' importance in combating diseases like dengue.

  6. Hussain-Alkhateeb L, Kroeger A, Olliaro P, Rocklöv J, Sewe MO, Tejeda G, et al.
    PLoS One, 2018;13(5):e0196811.
    PMID: 29727447 DOI: 10.1371/journal.pone.0196811
    BACKGROUND: Dengue outbreaks are increasing in frequency over space and time, affecting people's health and burdening resource-constrained health systems. The ability to detect early emerging outbreaks is key to mounting an effective response. The early warning and response system (EWARS) is a toolkit that provides countries with early-warning systems for efficient and cost-effective local responses. EWARS uses outbreak and alarm indicators to derive prediction models that can be used prospectively to predict a forthcoming dengue outbreak at district level.

    METHODS: We report on the development of the EWARS tool, based on users' recommendations into a convenient, user-friendly and reliable software aided by a user's workbook and its field testing in 30 health districts in Brazil, Malaysia and Mexico.

    FINDINGS: 34 Health officers from the 30 study districts who had used the original EWARS for 7 to 10 months responded to a questionnaire with mainly open-ended questions. Qualitative content analysis showed that participants were generally satisfied with the tool but preferred open-access vs. commercial software. EWARS users also stated that the geographical unit should be the district, while access to meteorological information should be improved. These recommendations were incorporated into the second-generation EWARS-R, using the free R software, combined with recent surveillance data and resulted in higher sensitivities and positive predictive values of alarm signals compared to the first-generation EWARS. Currently the use of satellite data for meteorological information is being tested and a dashboard is being developed to increase user-friendliness of the tool. The inclusion of other Aedes borne viral diseases is under discussion.

    CONCLUSION: EWARS is a pragmatic and useful tool for detecting imminent dengue outbreaks to trigger early response activities.

  7. Abd Rahman M, Ahmad Zaki R, Sarimin R, Ariff MI, Suli Z, Mahmud M, et al.
    PLoS One, 2017;12(11):e0184559.
    PMID: 29095822 DOI: 10.1371/journal.pone.0184559
    The Malaysian Dengue Clinical Practice Guidelines (CPG) have been developed to provide evidence-based guidance in the management of dengue infections. The use of these guidelines is essential to ensure its recommendations are being practiced. However, the adherence to the guidelines for management of dengue (revised 2nd edition) by healthcare providers still remains unknown. Therefore, the aim of this study was to evaluate the proportion among healthcare providers that adhere to this Dengue CPG. A retrospective cohort study of dengue cases registered from 1 January 2014 to 1 June 2015 was conducted in public hospitals and health clinics in Selangor, Putrajaya and Kuala Lumpur. Adherence to the CPG recommendations were recorded by reviewing patients' case notes. Overall proportion of adherence in clinical components of the recommendation were (7.1 to 100.0% versus 7.7 to 73.8%) in history taking, (6.7 to 100.0% versus 12.3 to 60.0%) in physical examinations, (18.4 to 100.0% versus 23.1 to 83.2%) in assessment of warning signs, (0.6 to 100.0% versus 12.3 to 87.7%) in assessment of haemodynamic status, (60.0 to 100.0% versus 27.7 to 40.0%) in diagnosis, (46.6 to 80.0% versus 52.3%) in case notifications, (73.2 to 100.0% versus 89.2 to 96.9%) in performing specific laboratory investigations and (7.9 to 100.0% versus 21.5%) in monitoring, for outpatient versus inpatient, respectively. Adherence trends were demonstrated to be higher in hospital settings compared to outpatient settings. Adherence to this Dengue CPG varies widely with overall good clinical outcomes observed.

    Study site: public hospitals and health clinics in Selangor, Putrajaya and Kuala Lumpur
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links