The nucleic acid sequences of the pre-membrane/membrane and envelope protein genes of 23 geographically and temporally distinct dengue (DEN)-3 viruses were determined. This was accomplished by reverse transcriptase-PCR amplification of the structural genes followed by automated DNA sequence analysis. Comparison of nucleic acid sequences revealed that similarity among the viruses was greater than 90%. The similarity among deduced amino acids was between 95% and 100%, and in many cases identical amino acid substitutions occurred among viruses from similar geographical regions. Alignment of nucleic acid sequences followed by parsimony analysis allowed the generation of phylogenetic trees, demonstrating that geographically independent evolution of DEN-3 viruses had occurred. The DEN-3 viruses were separated into four genetically distinct subtypes. Subtype I consists of viruses from Indonesia, Malaysia, the Philippines and the South Pacific islands; subtype II consists of viruses from Thailand; subtype III consists of viruses from Sri Lanka, India, Africa and Samoa; subtype IV consists of viruses from Puerto Rico and the 1965 Tahiti virus. Phylogenetic analysis has also contributed to our understanding of the molecular epidemiology and worldwide distribution of DEN-3 viruses.
Endemic/epidemic dengue viruses (DEN) that are transmitted among humans by the mosquito vectors Aedes aegypti and Aedes albopictus are hypothesized to have evolved from sylvatic DEN strains that are transmitted among nonhuman primates in West Africa and Malaysia by other Aedes mosquitoes. We tested this hypothesis with phylogenetic studies using envelope protein gene sequences of both endemic/epidemic and sylvatic strains. The basal position of sylvatic lineages of DEN-1, -2, and -4 suggested that the endemic/epidemic lineages of these three DEN serotypes evolved independently from sylvatic progenitors. Time estimates for evolution of the endemic/epidemic forms ranged from 100 to 1,500 years ago, and the evolution of endemic/epidemic forms represents relatively recent events in the history of DEN evolution. Analysis of envelope protein amino acid changes predicted to have accompanied endemic/epidemic emergence suggested a role for domain III in adaptation to new mosquito and/or human hosts.
The 6th Asia Dengue Summit (ADS) themed "Road Map to Zero Dengue Death" was held in Thailand from 15th-16th June 2023. The summit was hosted by Tropical Medicine Cluster, Chulalongkorn University, Bangkok, Thailand in conjunction with Queen Saovabha Memorial Institute, The Thai Red Cross Society; Faculty of Tropical Medicine, Mahidol University; and the Ministry of Public Health. The 6th ADS was convened by Asia Dengue Voice and Action (ADVA); Global Dengue and Aedes Transmitted Diseases Consortium (GDAC); Southeast Asian Ministers of Education Tropical Medicine and Public Health Network (SEAMEO TROPMED); Fondation Mérieux (FMx) and the International Society for Neglected Tropical Diseases (ISNTD). Dengue experts from academia and research, and representatives from the Ministries of Health, Regional and Global World Health Organization (WHO) and International Vaccine Institute (IVI) participated in the three-day summit. With more than 51 speakers and 451 delegates from over 24 countries, 10 symposiums, and 2 full days, the 6th ADS highlighted the growing threat of dengue and its antigenic evolution, flagged the urgent need to overcome vaccine hesitancy and misinformation crisis, and focused on dengue control policies, newer diagnostics, therapeutics and vaccines, travel-associated dengue, and strategies to improve community involvement.
Dengue presents a formidable and growing global economic and disease burden, with around half the world's population estimated to be at risk of infection. There is wide variation and substantial uncertainty in current estimates of dengue disease burden and, consequently, on economic burden estimates. Dengue disease varies across time, geography and persons affected. Variations in the transmission of four different viruses and interactions among vector density and host's immune status, age, pre-existing medical conditions, all contribute to the disease's complexity. This systematic review aims to identify and examine estimates of dengue disease burden and costs, discuss major sources of uncertainty, and suggest next steps to improve estimates. Economic analysis of dengue is mainly concerned with costs of illness, particularly in estimating total episodes of symptomatic dengue. However, national dengue disease reporting systems show a great diversity in design and implementation, hindering accurate global estimates of dengue episodes and country comparisons. A combination of immediate, short-, and long-term strategies could substantially improve estimates of disease and, consequently, of economic burden of dengue. Suggestions for immediate implementation include refining analysis of currently available data to adjust reported episodes and expanding data collection in empirical studies, such as documenting the number of ambulatory visits before and after hospitalization and including breakdowns by age. Short-term recommendations include merging multiple data sources, such as cohort and surveillance data to evaluate the accuracy of reporting rates (by health sector, treatment, severity, etc.), and using covariates to extrapolate dengue incidence to locations with no or limited reporting. Long-term efforts aim at strengthening capacity to document dengue transmission using serological methods to systematically analyze and relate to epidemiologic data. As promising tools for diagnosis, vaccination, vector control, and treatment are being developed, these recommended steps should improve objective, systematic measures of dengue burden to strengthen health policy decisions.
A paramyxovirus virus termed Nipah virus has been identified as the etiologic agent of an outbreak of severe encephalitis in people with close contact exposure to pigs in Malaysia and Singapore. The outbreak was first noted in late September 1998 and by mid-June 1999, more than 265 encephalitis cases, including 105 deaths, had been reported in Malaysia, and 11 cases of encephalitis or respiratory illness with one death had been reported in Singapore. Electron microscopic, serologic, and genetic studies indicate that this virus belongs to the family Paramyxoviridae and is most closely related to the recently discovered Hendra virus. We suggest that these two viruses are representative of a new genus within the family Paramyxoviridae. Like Hendra virus, Nipah virus is unusual among the paramyxoviruses in its ability to infect and cause potentially fatal disease in a number of host species, including humans.
Dengue is a major public health problem worldwide. Although several drug candidates have been evaluated in randomized controlled trials, none has been effective and at present, early recognition of severe dengue and timely supportive care are used to reduce mortality. While the first dengue vaccine was recently licensed, and several other candidates are in late stage clinical trials, future decisions regarding widespread deployment of vaccines and/or therapeutics will require evidence of product safety, efficacy and effectiveness. Standard, quantifiable clinical endpoints are needed to ensure reproducibility and comparability of research findings. To address this need, we established a working group of dengue researchers and public health specialists to develop standardized endpoints and work towards consensus opinion on those endpoints. After discussion at two working group meetings and presentations at international conferences, a Delphi methodology-based query was used to finalize and operationalize the clinical endpoints. Participants were asked to select the best endpoints from proposed definitions or offer revised/new definitions, and to indicate whether contributing items should be designated as optional or required. After the third round of inquiry, 70% or greater agreement was reached on moderate and severe plasma leakage, moderate and severe bleeding, acute hepatitis and acute liver failure, and moderate and severe neurologic disease. There was less agreement regarding moderate and severe thrombocytopenia and moderate and severe myocarditis. Notably, 68% of participants agreed that a 50,000 to 20,000 mm3 platelet range be used to define moderate thrombocytopenia; however, they remained divided on whether a rapid decreasing trend or one platelet count should be case defining. While at least 70% agreement was reached on most endpoints, the process identified areas for further evaluation and standardization within the context of ongoing clinical studies. These endpoints can be used to harmonize data collection and improve comparability between dengue clinical trials.