Displaying all 9 publications

Abstract:
Sort:
  1. Chuah TS, Loh JY, Hii YS
    Bull Environ Contam Toxicol, 2007 Nov;79(5):557-61.
    PMID: 17639329
    Acute and chronic effects of insecticide-endosulfan on the survival and reproduction performance of Moina macrocopa were determined in a laboratory study. Endosulfan concentrations that cause 50% mortality (LC50) after exposure for 24 and 48 h were 3.34 and 0.16 mg L(-1), respectively. Average longevity, initial age of reproduction and intrinsic rate of natural increase were reduced at 0.002 mg L(-1). Fecundity was greatly reduced by about 70% at 0.0004 mg L(-1) and approximately 97% at 0.002 mg L(-1) as compared to control organisms throughout the whole life span of 15 days. If environmental concentration of endosulfan do not exceed 0.0004 mg L(-1), application of this insecticide is unlikely to induce detrimental effects on these cladoceran populations in agro-ecosystem.
  2. Lee CW, Bong CW, Hii YS
    Appl Environ Microbiol, 2009 Dec;75(24):7594-601.
    PMID: 19820145 DOI: 10.1128/AEM.01227-09
    We investigated the temporal variation of bacterial production, respiration, and growth efficiency in the tropical coastal waters of Peninsular Malaysia. We selected five stations including two estuaries and three coastal water stations. The temperature was relatively stable (averaging around 29.5 degrees C), whereas salinity was more variable in the estuaries. We also measured dissolved organic carbon and nitrogen (DOC and DON, respectively) concentrations. DOC generally ranged from 100 to 900 microM, whereas DON ranged from 0 to 32 microM. Bacterial respiration ranged from 0.5 to 3.2 microM O2 h(-1), whereas bacterial production ranged from 0.05 to 0.51 microM C h(-1). Bacterial growth efficiency was calculated as bacterial production/(bacterial production + respiration), and ranged from 0.02 to 0.40. Multiple correlation analyses revealed that bacterial production was dependent upon primary production (r2 = 0.169, df = 31, and P < 0.02) whereas bacterial respiration was dependent upon both substrate quality (i.e., DOC/DON ratio) (r2 = 0.137, df = 32, and P = 0.03) and temperature (r2 = 0.113, df = 36, and P = 0.04). Substrate quality was the most important factor (r2 = 0.119, df = 33, and P = 0.04) for the regulation of bacterial growth efficiency. Using bacterial growth efficiency values, the average bacterial carbon demand calculated was from 5.30 to 11.28 microM C h(-1). When the bacterial carbon demand was compared with primary productivity, we found that net heterotrophy was established at only two stations. The ratio of bacterial carbon demand to net primary production correlated significantly with bacterial growth efficiency (r2 = 0.341, df = 35, and P < 0.001). From nonlinear regression analysis, we found that net heterotrophy was established when bacterial growth efficiency was <0.08. Our study showed the extent of net heterotrophy in these waters and illustrated the importance of heterotrophic microbial processes in coastal aquatic food webs.
  3. Ong PT, Yong JC, Chin KY, Hii YS
    Chemosphere, 2011 Jul;84(5):578-84.
    PMID: 21529890 DOI: 10.1016/j.chemosphere.2011.03.059
    Understanding on the bioaccumulation and depuration of PAHs (polycyclic aromatic hydrocarbons) in Penaeus monodon is important in seafood safety because it is one of the most popular seafood consumed worldwide. In this study, we used anthracene as the precursor compound for PAHs accumulation and depuration in the shrimp. Commercial feed pellets spiked with anthracene were fed to P. monodon. At 20 mg kg(-1) anthracene, P. monodon accumulated 0.1% of the anthracene from the feed. P. monodon deputed the PAH two times faster than its accumulation. The shrimp reduced its feed consumption when anthracene content in the feed exceeded 20 mg kg(-1). At 100 mg kg(-1) anthracene, P. monodon started to have necrosis tissues on the posterior end of their thorax. The bioaccumulation factor (BAF), uptake rate constant (k(1)) and depuration rate constant (k(2)) of anthracene in P. monodon were 1.15×10(-3), 6.80×10(-4) d(-1) and 6.28×10(-1) d(-1), respectively. The depuration rate constant is about thousand times higher than the uptake rate constant and this indicated that this crustacean is efficient in depurating hydrocarbons from their tissue.
  4. Siaw YM, Jeevanandam J, Hii YS, Chan YS
    Naunyn Schmiedebergs Arch Pharmacol, 2020 Dec;393(12):2253-2264.
    PMID: 32632566 DOI: 10.1007/s00210-020-01934-x
    In recent times, magnesium oxide (MgO) nanoparticles are proven to be an excellent antibacterial agent which inhibits the growth of bacteria by generating reactive oxygen species (ROS). Release of ROS by nanoparticles will damage the cell membrane of bacteria and leads to the leakage of bacterial internal components and cell death. However, chemically synthesized MgO nanoparticles may possess toxic functional groups which may inhibit healthy human cells along with bacterial cells. Thus, the aim of the present study is to synthesize MgO nanoparticles using leaf extracts of Amaranthus tricolor and photo-irradiation of visible light as a catalyst, without addition of any chemicals. Optimization was performed using Box-Behnken design (BBD) to obtain the optimum condition required to synthesize smallest nanoparticles. The parameters such as time of reaction, the concentration of precursor, and light intensity have been identified to affect the size of biosynthesized nanoparticles and was optimized. The experiment performed with optimized conditions such as 0.001 M concentration of magnesium acetate as precursor, 5 cm distance of light (intensity), and 15 min of reaction time (light exposure) has led to the formation of 74.6 nm sized MgO nanoparticles. The antibacterial activities of MgO nanoparticles formed via photo-irradiation and conventional biosynthesis approach were investigated and compared. The lethal dosage of E. coli for photo-irradiated and conventional biosynthesis MgO nanoparticles was 0.6 ml and 0.4 ml, respectively. Likewise, the lethal dosage of S. aureus for both biosynthesis approaches was found to be 0.4 ml. The results revealed that the antibacterial activity of MgO nanoparticles from both biosynthesis approaches was similar. Thus, photo-irradiated MgO nanoparticles were beneficial over heat-mediated conventional method due to the reduced synthesis duration.
  5. Lim JH, Lee CW, Bong CW, Affendi YA, Hii YS, Kudo I
    Mar Pollut Bull, 2018 Mar;128:415-427.
    PMID: 29571392 DOI: 10.1016/j.marpolbul.2018.01.037
    Particulate phosphorus was the dominant phosphorus species and accounted for 72 ± 5% of total phosphorus in coastal habitats, 63 ± 4% in estuaries, 58 ± 6% in lakes and 80 ± 7% in aquaculture farms whereas dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP) were minor components. Correlation analyses (DIP vs Chl a; R2 = 0.407, df = 31, p 
  6. Jeevanandam J, Krishnan S, Hii YS, Pan S, Chan YS, Acquah C, et al.
    J Nanostructure Chem, 2022;12(5):809-831.
    PMID: 35070207 DOI: 10.1007/s40097-021-00465-y
    Numerous viral infections are common among humans, and some can lead to death. Even though conventional antiviral agents are beneficial in eliminating viral infections, they may lead to side effects or physiological toxicity. Silver nanoparticles and nanocomposites have been demonstrated to possess inhibitory properties against several pathogenic microbes, including archaea, bacteria, fungi, algae, and viruses. Its pronounced antimicrobial activity against various microbe-mediated diseases potentiates its use in combating viral infections. Notably, the appropriated selection of the synthesis method to fabricate silver nanoparticles is a major factor for consideration as it directly impacts antiviral efficacy, level of toxicity, scalability, and environmental sustainability. Thus, this article presents and discusses various synthesis approaches to produce silver nanoparticles and nanocomposites, providing technological insights into selecting approaches to generate antiviral silver-based nanoparticles. The antiviral mechanism of various formulations of silver nanoparticles and the evaluation of its propensity to combat specific viral infections as a potential antiviral agent are also discussed.
  7. Wong YY, Lee CW, Chai SCY, Lim JH, Bong CW, Sim EUH, et al.
    Mar Pollut Bull, 2022 Dec;185(Pt A):114297.
    PMID: 36327936 DOI: 10.1016/j.marpolbul.2022.114297
    We investigated the appropriateness of faecal indicator bacteria in tropical waters. We compared total coliform (undetectable to 7.2 × 105 cfu 100 mL-1), faecal coliform (undetectable to 6.1 × 105 cfu 100 mL-1) and enterococci (undetectable to 3.1 × 104 cfu 100 mL-1) distribution in Peninsular Malaysia. Faecal indicator bacteria was highest in freshwater, and lowest in seawater (q > 4.18, p 
  8. Mohd MH, Rahman MAA, Nazri MN, Tan CH, Mohamad Y, Lim CS, et al.
    ScientificWorldJournal, 2020;2020:4695894.
    PMID: 33223970 DOI: 10.1155/2020/4695894
    Decommissioning of the offshore platform as an artificial reef, known as Rigs-to-Reefs (R2R), has become a sustainable approach for oil companies. The platform was reused to serve the underwater ecosystem as an artificial reef for a new marine ecosystem which helps to tackle food security issue. This paper presents the findings of the formulation of the reefing viability index to recognize an offshore region that can be used for R2R projects within the South China Sea. The combined effects of spatial data, numerical modelling, and geographic system (GIS) are proposed to study the relationship of spawning ground coral reefs, diversity, and planula larvae in the process of colonization to establish a map of the reef potential environment. Coral connectivity and spawning behaviour were studied to determine the possible source of coral seedling released during the spawning season, twice a year. A geographic reef viability index was established consisting of seven parameters which are coral larval density, pelagic larval length, sea currents, temperature, chlorophyll-a, depth, and substrate availability. The ocean hydrodynamic model was designed to resemble the pattern of larval scattering. By using the simulations and rankings, there were 95 (21%) sites which could probably be used for in situ reefing, whereas 358 (79%) sites were likely ideal for ex situ reefing. Validation of the viability index was carried out using media footage assessment of remotely operated vehicle (ROV).
  9. Leung KMY, Yeung KWY, You J, Choi K, Zhang X, Smith R, et al.
    Environ Toxicol Chem, 2020 Aug;39(8):1485-1505.
    PMID: 32474951 DOI: 10.1002/etc.4788
    Environmental and human health challenges are pronounced in Asia, an exceptionally diverse and complex region where influences of global megatrends are extensive and numerous stresses to environmental quality exist. Identifying priorities necessary to engage grand challenges can be facilitated through horizon scanning exercises, and to this end we identified and examined 23 priority research questions needed to advance toward more sustainable environmental quality in Asia, as part of the Global Horizon Scanning Project. Advances in environmental toxicology, environmental chemistry, biological monitoring, and risk-assessment methodologies are necessary to address the adverse impacts of environmental stressors on ecosystem services and biodiversity, with Asia being home to numerous biodiversity hotspots. Intersections of the food-energy-water nexus are profound in Asia; innovative and aggressive technologies are necessary to provide clean water, ensure food safety, and stimulate energy efficiency, while improving ecological integrity and addressing legacy and emerging threats to public health and the environment, particularly with increased aquaculture production. Asia is the largest chemical-producing continent globally. Accordingly, sustainable and green chemistry and engineering present decided opportunities to stimulate innovation and realize a number of the United Nations Sustainable Development Goals. Engaging the priority research questions identified herein will require transdisciplinary coordination through existing and nontraditional partnerships within and among countries and sectors. Answering these questions will not be easy but is necessary to achieve more sustainable environmental quality in Asia. Environ Toxicol Chem 2020;39:1485-1505. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links