Displaying all 3 publications

Abstract:
Sort:
  1. Hitam CNC, Jalil AA
    J Environ Manage, 2020 Mar 15;258:110050.
    PMID: 31929077 DOI: 10.1016/j.jenvman.2019.110050
    Photocatalytic degradation is among the promising technology for removal of various dyes and organic contaminants from environment owing to its excellent catalytic activity, low energy utilization, and low cost. As one of potential photocatalysts, Fe2O3 has emerged as an important material for degradation of numerous dyes and organic contaminants caused by its tolerable band gap, wide harvesting of visible light, good stability and recyclability. The present review thoroughly summarized the classification, synthesis route of Fe2O3 with different morphologies, and several modifications of Fe2O3 for improved photocatalytic performance. These include the incorporation with supporting materials, formation of heterojunction with other semiconductor photocatalysts, as well as the fabrication of Z-scheme. Explicitly, the other photocatalytic applications of Fe2O3, including for removal of heavy metals, reduction of CO2, evolution of H2, and N2 fixation are also deliberately discussed to further highlight the huge potential of this catalyst. Moreover, the prospects and future challenges are also comprised to expose the unscrutinized criteria of Fe2O3 photocatalyst. This review aims to contribute a knowledge transfer for providing more information on the potential of Fe2O3 photocatalyst. In the meantime, it might give an idea for utilization of this photocatalyst in other environmental remediation application.
  2. Hitam CNC, Jalil AA
    Environ Res, 2022 03;204(Pt A):111964.
    PMID: 34461122 DOI: 10.1016/j.envres.2021.111964
    As one of the potential bionanomaterials, nanocellulose has appeared as a favorable candidate for photoremediation of the environment because of its abundance in nature, inexpensive, eco-friendly, decomposable, high surface area, and outstanding mechanical properties. The current review carefully summarized the diverse type of nanocellulose, their preparation approaches, and several previous works on the use of nanocellulose for photoremediation. These include the role of nanocellulose for the increased surface active site of the hybrid photocatalysts by providing a large surface area for enhanced adsorption of photons and pollutant molecules, as a dispersing agent to increase distribution of metal/non-metal dopants photocatalysts, as well as for controlled size and morphology of the dopants photocatalysts. Furthermore, the recommendations for upcoming research provided in this review are anticipated to ignite an idea for the development of other nanocellulose-based photocatalysts. Other than delivering beneficial information on the present growth of the nanocellulose biomaterials photocatalysts, this review is expected will attract more interest to the utilization of nanocellulose photocatalyst and distribute additional knowledge in this exciting area of environmental photoremediation. This could be attained by considering that a review on nanocellulose biomaterials for environmental health photoremediation has not been described elsewhere, notwithstanding intensive research works have been dedicated to this topic.
  3. Aziz FFA, Jalil AA, Hassan NS, Hitam CNC, Rahman AFA, Fauzi AA
    J Hazard Mater, 2021 Jan 05;401:123277.
    PMID: 33113710 DOI: 10.1016/j.jhazmat.2020.123277
    Multiple contaminants including heavy metals and phenolic compounds are normally co-exist in wastewater, which caused the treatment process is rather complicated. Herein, the synergistic photoredox of Cr(VI) and p-cresol (pC) by innovative fibrous silica zirconia (FSZr) photocatalyst was reported. The high surface area of FSZr comprised of microspheres with a bicontinuous concentric lamella structure morphology consisted of silica, while its core consisted of ZrO2 structure. The rearrangement of FSZr framework increased the crystallinity, formed Si-O-Zr bonds and narrowed the band gap of ZrO2 for enhanced of photoredox of Cr(VI) and pC. Compared to the reaction, the photoredox efficiency of FSZr for removing Cr(VI) and pC in simultaneous system was found to be 96 % and 59 %, respectively which are higher than that in its single system owing to the efficient electron-hole charge separation. Phenolic compound with high degree of electron donating group gave beneficial effect to photoreduction of Cr(VI). Consequently, a proposed mechanism involving multi-photoredox pathway were proposed based on photoredox reaction and scavengers studies. FSZr sustained the simultaneous photoredox activities after five runs demonstrating its possibility to be use in the wastewater treatment of various pollutants.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links