Ambient-storage-friendly, ready-to-eat (RTE) meat products are convenient in emergencies, such as earthquakes, flash floods and the current global Covid-19 lockdown. However, given the processing and long storage time of such food products, the lipid and protein components may be more susceptible to oxidation. Chicken serunding is a low-moisture, high-lipid, high-protein, RTE product that is prone to lipid oxidation and protein co-oxidation, causing product quality deterioration. The present study assessed the effects of storage temperature (25, 40, 60 °C), antioxidant (butylated hydroxyanisole, BHA), and multilayer packaging materials [metallised polyethene terephthalate (MPET) and aluminium] on the lipid oxidation and protein co-oxidation of chicken serunding during six months of storage. All lipid and protein markers elevated with increasing temperature (25 < 40 < 60 °C), indicating that storage of low-moisture meat at high temperature is not feasible. BHA was effective against lipid oxidation, as indicated by the significantly lower (p <0.05) extracted lipid content and delayed formation of malondialdehyde, a secondary lipid oxidation product. However, BHA is not effective against protein co-oxidation, as shown by the insignificant (p >0.05) effect on preventing tryptophan loss, protein carbonyl formation and Schiff base accumulation. MPET packaging with a superior light and oxygen barrier provided significant protection (p <0.05) compared to aluminium. In conclusion, low temperature (25 °C) storage of low-moisture, high-lipid, high-protein, cooked meat systems in MPET packaging is recommended for long-term storage to delay the progression of lipid oxidation and protein co-oxidation.
The current study evaluated the γ-aminobutyric acid (GABA) producing ability from three novel strains of lactic acid bacteria (L. plantarum Taj-Apis362, assigned as UPMC90, UPMC91, and UPMC1065) co-cultured with starter culture in a yogurt. A combination of UPMC90 + UPMC91 with starter culture symbiotically revealed the most prominent GABA-producing effect. Response surface methodology revealed the optimized fermentation conditions at 39.0 °C, 7.25 h, and 11.5 mM glutamate substrate concentration to produce GABA-rich yogurt (29.96 mg/100 g) with desirable pH (3.93) and water-holding capacity (63.06%). At 2% glucose to replace pyridoxal-5-phosphate (PLP), a cofactor typically needed during GABA production, GABA content was further enhanced to 59.00 mg/100 g. In vivo study using this sample revealed a blood pressure-lowering efficacy at 0.1 mg/kg GABA dosage (equivalent to 30 mg/kg GABA-rich yogurt) in spontaneously hypertensive rats. An improved method to produce GABA-rich yogurt has been established, involving shorter fermentation time and lower glutamate concentration than previous work, along with glucose induction that omits the use of costly PLP, fostering the potential of developing a GABA-rich functional dairy product through natural fermentation with desirable product quality and antihypertensive property.
We evaluated the acute (single-dose) and subacute (repeated-dose) oral toxicity of alcalase-hydrolyzed whey protein concentrate. Our acute study revealed no death or treatment-related complications, and the median lethal dose of whey protein concentrate hydrolysate was >2,500 mg/kg. In the subacute study, when the hydrolysate was fed at 3 different concentrations (200, 400, and 800 mg/kg), no groups showed toxicity changes compared with controls. Then, whey protein concentrate hydrolysate was orally administered to spontaneously hypertensive rats. Results revealed significant reductions in blood pressure in a dose-dependent manner, and dosing at 400 mg/kg led to significant blood pressure reduction (-47.8 mm Hg) compared with controls (blood pressure maintained) and the findings of previous work (-21 mm Hg). Eight peptides-RHPEYAVSVLLR, GGAPPAGRL, GPPLPRL, ELKPTPEGDL, VLSELPEP, DAQSAPLRVY, RDMPIQAF, and LEQVLPRD-were sequentially identified and characterized. Of the peptides, VLSELPEP and LEQVLPRD showed the most prominent in vitro angiotensin-I converting enzyme inhibition with half-maximal inhibitory concentrations of 0.049 and 0.043 mM, respectively. These findings establish strong evidence for the in vitro and in vivo potential of whey protein concentrate hydrolysate to act as a safe, natural functional food ingredient that exerts antihypertensive activity.