Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Ishak MR, Sapuan SM, Leman Z, Rahman MZ, Anwar UM, Siregar JP
    Carbohydr Polym, 2013 Jan 16;91(2):699-710.
    PMID: 23121967 DOI: 10.1016/j.carbpol.2012.07.073
    Sugar palm (Arenga pinnata) is a multipurpose palm species from which a variety of foods and beverages, timber commodities, biofibres, biopolymers and biocomposites can be produced. Recently, it is being used as a source of renewable energy in the form of bio-ethanol via fermentation process of the sugar palm sap. Although numerous products can be produced from sugar palm, three products that are most prominent are palm sugar, fruits and fibres. This paper focuses mainly on the significance of fibres as they are highly durable, resistant to sea water and because they are available naturally in the form of woven fibre they are easy to process. Besides the recent advances in the research of sugar palm fibres and their composites, this paper also addresses the development of new biodegradable polymer derived from sugar palm starch, and presents reviews on fibre surface treatment, product development, and challenges and efforts on properties enhancement of sugar palm fibre composites.
  2. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    J Food Sci Technol, 2016 Jan;53(1):326-36.
    PMID: 26787952 DOI: 10.1007/s13197-015-2009-7
    In this study, sugar palm starch (SPS) films were developed using glycerol (G), sorbitol (S) or their combination (GS) as plasticizers at the ratio of 15, 30 and 45 (wt)% using casting technique. The addition of plasticizers to SPS film-forming solutions helped to overcome the brittle and fragile nature of unplasticized SPS films. Increased plasticizer concentration resulted to an increase in film thickness, moisture content and solubility. On the contrary, density and water absorption of plasticized films decreased with increasing plasticizer concentration. Raising the plasticizer content from 15 to 45 % showed less effect on the moisture content and water absorption of S-plasticized films. Films containing glycerol and glycerol-sorbitol plasticizer (G, and GS) demonstrated higher moisture content, solubility and water absorption capacity compared to S-plasticized films. The results obtained in this study showed that plasticizer type and concentration significantly improves film properties and enhances their suitability for food packaging applications.
  3. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Carbohydr Polym, 2016 08 01;146:36-45.
    PMID: 27112848 DOI: 10.1016/j.carbpol.2016.03.051
    The development and characterization of environmentally friendly bilayer films from sugar palm starch (SPS) and poly(lactic acid) (PLA) were conducted in this study. The SPS-PLA bilayer films and their individual components were characterized for their physical, mechanical, thermal and water barrier properties. Addition of 50% PLA layer onto 50% SPS layer (SPS50-PLA50) increased the tensile strength of neat SPS film from 7.74 to 13.65MPa but reduced their elongation at break from 46.66 to 15.53%. The incorporation of PLA layer significantly reduced the water vapor permeability as well as the water uptake and solubility of bilayer films which was attributed to the hydrophobic characteristic of the PLA layer. Furthermore, scanning electron microscopy (SEM) image of SPS50-PLA50 revealed lack of strong interfacial adhesion between the SPS and PLA. Overall, the incorporation of PLA layer onto SPS films enhances the suitability of SPS based films for food packaging.
  4. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Int J Biol Macromol, 2016 Aug;89:575-81.
    PMID: 27177458 DOI: 10.1016/j.ijbiomac.2016.05.028
    The aim of this work is to study the behavior of biodegradable sugar palm starch (SPS) based thermoplastic containing agar in the range of 10-40wt%. The thermoplastics were melt-mixed and then hot pressed at 140°C for 10min. SEM investigation showed good miscibility between SPS and agar. FT-IR analysis confirmed that SPS and agar were compatible and inter-molecular hydrogen bonds existed between them. Incorporation of agar increased the thermoplastic starch tensile properties (Young's modulus and tensile strength). The thermal stability and moisture uptake increased with increasing agar content. The present work shows that starch-based thermoplastics with 30wt% agar content have the highest tensile strength. Higher content of agar (40wt%) resulted to more rough cleavage fracture and slight decrease in the tensile strength. In conclusion, the addition of agar improved the thermal and tensile properties of thermoplastic SPS which widened the potential application of this eco-friendly material. The most promising applications for this eco-friendly material are short-life products such as packaging, container, tray, etc.
  5. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Int J Biol Macromol, 2017 Apr;97:606-615.
    PMID: 28109810 DOI: 10.1016/j.ijbiomac.2017.01.079
    The aim of this research is to investigate the effect of sugar palm fibre (SPF) on the mechanical, thermal and physical properties of seaweed/thermoplastic sugar palm starch agar (TPSA) composites. Hybridized seaweed/SPF filler at weight ratio of 25:75, 50:50 and 75:25 were prepared using TPSA as a matrix. Mechanical, thermal and physical properties of hybrid composites were carried out. Obtained results indicated that hybrid composites display improved tensile and flexural properties accompanied with lower impact resistance. The highest tensile (17.74MPa) and flexural strength (31.24MPa) was obtained from hybrid composite with 50:50 ratio of seaweed/SPF. Good fibre-matrix bonding was evident in the scanning electron microscopy (SEM) micrograph of the hybrid composites' tensile fracture. Fourier transform infrared spectroscopy (FT-IR) analysis showed increase in intermolecular hydrogen bonding following the addition of SPF. Thermal stability of hybrid composites was enhanced, indicated by a higher onset degradation temperature (259°C) for 25:75 seaweed/SPF composites than the individual seaweed composites (253°C). Water absorption, thickness swelling, water solubility, and soil burial tests showed higher water and biodegradation resistance of the hybrid composites. Overall, the hybridization of SPF with seaweed/TPSA composites enhances the properties of the biocomposites for short-life application; that is, disposable tray, plate, etc.
  6. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Int J Biol Macromol, 2017 Jun;99:265-273.
    PMID: 28249765 DOI: 10.1016/j.ijbiomac.2017.02.092
    The aim of this paper is to investigate the characteristics of thermoplastic sugar palm starch/agar (TPSA) blend containing Eucheuma cottonii seaweed waste as biofiller. The composites were prepared by melt-mixing and hot pressing at 140°C for 10min. The TPSA/seaweed composites were characterized for their mechanical, thermal and biodegradation properties. Incorporation of seaweed from 0 to 40wt.% has significantly improved the tensile, flexural, and impact properties of the TPSA/seaweed composites. Scanning electron micrograph of the tensile fracture showed homogeneous surface with formation of cleavage plane. It is also evident from TGA results that thermal stability of the composites were enhanced with addition of seaweed. After soil burial for 2 and 4 weeks, the biodegradation of the composites was enhanced with addition of seaweed. Overall, the incorporation of seaweed into TPSA enhances the properties of TPSA for short-life product application such as tray, plate, etc.
  7. Ilyas RA, Sapuan SM, Ishak MR
    Carbohydr Polym, 2018 Feb 01;181:1038-1051.
    PMID: 29253930 DOI: 10.1016/j.carbpol.2017.11.045
    Cellulose was extracted from sugar palm fibres (Arenga pinnata) by conducting delignification and mercerization treatments. Subsequently, sugar palm nanocrystalline celluloses (SPNCCs) were isolated from the extracted cellulose with 60wt% concentrated sulphuric acid. The chemical composition of sugar palm fibres were determined at different stages of treatment. Structural analysis was carried out by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Morphological analysis of extracted cellulose and isolated nanocrystalline cellulose (NCCs) was investigated by using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The thermal stability of sugar palm fibres at different stages of treatment was investigated by thermogravimetric analysis (TGA). The results showed that lignin and hemicellulose were removed from the extracted cellulose through the delignification and mercerization process, respectively. The isolated SPNCCs were found to have length and diameters of 130±30nm and 9±1.96nm, respectively.
  8. Mutafi A, Yidris N, Ishak MR, Zahari R
    Heliyon, 2018 Nov;4(11):e00937.
    PMID: 30839801 DOI: 10.1016/j.heliyon.2018.e00937
    Steel sections are normally shaped via cold work manufacturing processes. The extent of cold work to shape the steel sections might induce residual stresses in the region of bending. Previously, researchers had performed studies on the influences of local buckling on the failure behavior of steel compression members which shown that failure will happen when most of the yielding has extended to the middle surface in the bend region of the sections. Therefore, these cold work methods may have major effect on the behavior of the steel section and also its load-bearing capability. In addition, another factor may play significant role in formed section's load-bearing capacity which is the longitudinal residual strain. The longitudinal residual strain raised during forming procedure can be used to define the section imperfection of the formed section and its relation to the existence of defects. Therefore, the main motivation of this research paper is to perform three-dimensional finite element (3D-FE) to investigate peak longitudinal residual strains of a thin-walled steel plate with large bending angle along member length. A 3D finite element simulation in ABAQUS has been employed to simulate this forming process. The study concluded that the longitudinal residual strain at the section corner edge was higher than those at the rest of the corner region. These strains at the edge were higher than the yield strain


    (



    ε


    y



    )


    of the formed section which occurred due to the lack of transverse restraint. This made the plate edge tended to bend toward the normal direction when it was under a high transverse bending. This causes a significant difference in longitudinal strain at the plate edge.
  9. Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES
    Carbohydr Polym, 2018 Dec 15;202:186-202.
    PMID: 30286991 DOI: 10.1016/j.carbpol.2018.09.002
    Sugar palm fibre (SPF) was treated with NaClO2, bleached with NaOH and subsequently hydrolyzed with acid to obtain sugar palm nanocrystalline cellulose (SPNCCs). Bionanocomposites in the form of films were prepared by mixing sugar palm starch (SPS) and sorbitol/glycerol with different nanofiller SPNCCs compositions (0-1.0 wt%) using solution casting method. The resulting fibres and nanocomposites were characterized in terms of morphology (FESEM and TEM), footprint, crystallinity (XRD), light transmittance, biodegradability, physical, water barrier, thermal (TGA, DSC and DMA) and mechanical properties. The length (L), diameter (D) and L/D values of the SPNCCs were 130 ± 30.23, 8.5 ± 1.82 nm, and 15.3, respectively. The SPS/SPNCCs nanocomposite films exhibited higher crystallinity, tensile strength, Young's modulus, thermal and water-resistance compared to the neat SPS film. The results showed that the tensile strength and moduli of the bionanocomposites increased after being reinforced with SPNCCs and the optimum nanofiller content was 0.5%.
  10. Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES
    Int J Biol Macromol, 2019 Feb 15;123:379-388.
    PMID: 30447353 DOI: 10.1016/j.ijbiomac.2018.11.124
    Nanofibrillated cellulose (NFCs) were extracted from sugar palm fibres (SPS) in two separate stages; delignification and mercerization to remove lignin and hemicellulose, respectively. Subsequently, the obtained cellulose fibres were then mechanically extracted into nanofibres using high pressurized homogenization (HPH). The diameter distribution sizes of the isolated nanofibres were dependent on the cycle number of HPH treatment. TEM micro-images displayed the decreasing trend of NFCs diameter, from 21.37 to 5.5 nm when the number of cycle HPH was increased from 5 to 15 cycles, meanwhile TGA and XRD analysis showed that the degradation temperature and crystallinity of the NFCs were slightly increased from 347 to 347.3 °C and 75.38 to 81.19% respectively, when the number of cycles increased. Others analysis also were carried on such as FT-IR, FESEM, AFM, physical properties, zeta potential and yield analysis. The isolated NFCs may be potentially applied in various application, such as tissue engineering scaffolds, bio-nanocomposites, filtration media, bio-packaging and etc.
  11. Mohd Basri MS, Mustapha F, Mazlan N, Ishak MR
    Polymers (Basel), 2020 Nov 16;12(11).
    PMID: 33207752 DOI: 10.3390/polym12112709
    As a result of their significant importance and applications in vast areas, including oil and gas, building construction, offshore structures, ships, and bridges, coating materials are regularly exposed to harsh environments which leads to coating delamination. Therefore, optimum interfacial bonding between coating and substrate, and the reason behind excellent adhesion strength is of utmost importance. However, the majority of studies on polymer coatings have used a one-factor-at-a-time (OFAT) approach. The main objective of this study was to implement statistical analysis in optimizing the factors to provide the optimum adhesion strength and to study the microstructure of a rice husk ash (RHA)-based geopolymer composite coating (GCC). Response surface methodology was used to design experiments and perform analyses. RHA/alkali activated (AA) ratio and curing temperature were chosen as factors. Adhesion tests were carried out using an Elcometer and a scanning electron microscope was used to observe the microstructure. Results showed that an optimum adhesion strength of 4.7 MPa could be achieved with the combination of RHA/AA ratio of 0.25 and curing temperature at 75 °C. The microstructure analysis revealed that coating with high adhesion strength had good interfacial bonding with the substrate. This coating had good wetting ability in which the coating penetrated the valleys of the profiles, thus wetting the entire substrate surface. A large portion of dense gel matrix also contributed to the high adhesion strength. Conversely, a large quantity of unreacted or partially reacted particles may result in low adhesion strength.
  12. Alsubari S, Zuhri MYM, Sapuan SM, Ishak MR, Ilyas RA, Asyraf MRM
    Polymers (Basel), 2021 Jan 28;13(3).
    PMID: 33525703 DOI: 10.3390/polym13030423
    The interest in using natural fiber reinforced composites is now at its highest. Numerous studies have been conducted due to their positive benefits related to environmental issues. Even though they have limitations for some load requirements, this drawback has been countered through fiber treatment and hybridization. Sandwich structure, on the other hand, is a combination of two or more individual components with different properties, which when joined together can result in better performance. Sandwich structures have been used in a wide range of industrial material applications. They are known to be lightweight and good at absorbing energy, providing superior strength and stiffness-to-weight ratios, and offering opportunities, through design integration, to remove some components from the core element. Today, many industries use composite sandwich structures in a range of components. Through good design of the core structure, one can maximize the strength properties, with a low density. However, the application of natural fiber composites in sandwich structures is still minimal. Therefore, this paper reviewed the possibility of using a natural fiber composite in sandwich structure applications. It addressed the mechanical properties and energy-absorbing characteristics of natural fiber-based sandwich structures tested under various compression loads. The results and potential areas of improvement to fit into a wide range of engineering applications were discussed.
  13. Asyraf MRM, Ishak MR, Sapuan SM, Yidris N
    Polymers (Basel), 2021 Feb 19;13(4).
    PMID: 33669491 DOI: 10.3390/polym13040620
    The application of pultruded glass fiber-reinforced polymer composites (PGFRPCs) as a replacement for conventional wooden cross-arms in transmission towers is relatively new. Although numerous studies have conducted creep tests on coupon-scale PGFRPC cross-arms, none had performed creep analyses on full-scale PGFRPC cross-arms under actual working load conditions. Thus, this work proposed to study the influence of an additional bracing system on the creep responses of PGFRPC cross-arms in a 132 kV transmission tower. The creep behaviors and responses of the main members in current and braced PGFRPC cross-arm designs were compared and evaluated in a transmission tower under actual working conditions. These PGFRPC cross-arms were subjected to actual working loads mimicking the actual weight of electrical cables and insulators for a duration of 1000 h. The cross-arms were installed on a custom test rig in an open area to simulate the actual environment of tropical climate conditions. Further creep analysis was performed by using Findley and Burger models on the basis of experimental data to link instantaneous and extended (transient and viscoelastic) creep strains. The addition of braced arms to the structure reduced the total strain of a cross-arm's main member beams and improved elastic and viscous moduli. The addition of bracing arms improved the structural integrity and stiffness of the cross-arm structure. The findings of this study suggested that the use of a bracing system in cross-arm structures could prolong the structures' service life and subsequently reduce maintenance effort and cost for long-term applications in transmission towers.
  14. Mohd Nurazzi N, Asyraf MRM, Khalina A, Abdullah N, Sabaruddin FA, Kamarudin SH, et al.
    Polymers (Basel), 2021 Mar 26;13(7).
    PMID: 33810584 DOI: 10.3390/polym13071047
    A novel class of carbon nanotube (CNT)-based nanomaterials has been surging since 1991 due to their noticeable mechanical and electrical properties, as well as their good electron transport properties. This is evidence that the development of CNT-reinforced polymer composites could contribute in expanding many areas of use, from energy-related devices to structural components. As a promising material with a wide range of applications, their poor solubility in aqueous and organic solvents has hindered the utilizations of CNTs. The current state of research in CNTs-both single-wall carbon nanotubes (SWCNT) and multiwalled carbon nanotube (MWCNT)-reinforced polymer composites-was reviewed in the context of the presently employed covalent and non-covalent functionalization. As such, this overview intends to provide a critical assessment of a surging class of composite materials and unveil the successful development associated with CNT-incorporated polymer composites. The mechanisms related to the mechanical, thermal, and electrical performance of CNT-reinforced polymer composites is also discussed. It is vital to understand how the addition of CNTs in a polymer composite alters the microstructure at the micro- and nano-scale, as well as how these modifications influence overall structural behavior, not only in its as fabricated form but also its functionalization techniques. The technological superiority gained with CNT addition to polymer composites may be advantageous, but scientific values are here to be critically explored for reliable, sustainable, and structural reliability in different industrial needs.
  15. Amir AL, Ishak MR, Yidris N, Zuhri MYM, Asyraf MRM
    Polymers (Basel), 2021 Apr 20;13(8).
    PMID: 33923921 DOI: 10.3390/polym13081341
    Nowadays, pultruded glass fiber-reinforced polymer composite (PGFRPC) structures have been used widely for cross-arms in high transmission towers. These composite structures have replaced cross-arms of conventional materials like wood due to several factors, such as better strength, superior resistance to environmental degradation, reduced weight, and comparatively cheaper maintenance. However, lately, several performance failures have been found on existing cross-arm members, caused by moisture, temperature changes in the atmosphere, and other environmental factors, which may lead to a complete failure or reduced service life. As a potential solution for this problem, enhancing PGFRPC with honeycomb-filled composite structures will become a possible alternative that can sustain a longer service life compared to that of existing cross-arms. This is due to the new composite structures' superior performance under mechanical duress in providing better stiffness, excellence in flexural characteristics, good energy absorption, and increased load-carrying capacity. Although there has been a lack of previous research done on the enhancement of existing composite cross-arms in applications for high transmission towers, several studies on the enhancement of hollow beams and tubes have been done. This paper provides a state-of-the-art review study on the mechanical efficiency of both PGFRPC structures and honeycomb-filled composite sandwich structures in experimental and analytical terms.
  16. Ilyas RA, Sapuan SM, Asyraf MRM, Dayana DAZN, Amelia JJN, Rani MSA, et al.
    Polymers (Basel), 2021 May 23;13(11).
    PMID: 34070960 DOI: 10.3390/polym13111701
    Polymer composites filled with metal derivatives have been widely used in recent years, particularly as flame retardants, due to their superior characteristics, including high thermal behavior, low environmental degradation, and good fire resistance. The hybridization of metal and polymer composites produces various favorable properties, making them ideal materials for various advanced applications. The fire resistance performance of polymer composites can be enhanced by increasing the combustion capability of composite materials through the inclusion of metallic fireproof materials to protect the composites. The final properties of the metal-filled thermoplastic composites depend on several factors, including pore shape and distribution and morphology of metal particles. For example, fire safety equipment uses polyester thermoplastic and antimony sources with halogenated additives. The use of metals as additives in composites has captured the attention of researchers worldwide due to safety concern in consideration of people's life and public properties. This review establishes the state-of-art flame resistance properties of metals/polymer composites for numerous industrial applications.
  17. Azman MA, Asyraf MRM, Khalina A, Petrů M, Ruzaidi CM, Sapuan SM, et al.
    Polymers (Basel), 2021 Jun 09;13(12).
    PMID: 34207597 DOI: 10.3390/polym13121917
    Natural fibers have attracted great attention from industrial players and researchers for the exploitation of polymer composites because of their "greener" nature and contribution to sustainable practice. Various industries have shifted toward sustainable technology in order to improve the balance between the environment and social and economic concerns. This manuscript aims to provide a brief review of the development of the foremost natural fiber-reinforced polymer composite (NFRPC) product designs and their applications. The first part of the manuscript presents a summary of the background of various natural fibers and their composites in the context of engineering applications. The behaviors of NFPCs vary with fiber type, source, and structure. Several drawbacks of NFPCs, e.g., higher water absorption rate, inferior fire resistance, and lower mechanical properties, have limited their applications. This has necessitated the development of good practice in systematic engineering design in order to attain optimized NRPC products. Product design and manufacturing engineering need to move in a mutually considerate manner in order to produce successful natural fiber-based composite material products. The design process involves concept design, material selection, and finally, the manufacturing of the design. Numerous products have been commercialized using natural fibers, e.g., sports equipment, musical instruments, and electronic products. In the end, this review provides a guideline for the product design process based on natural fibers, which subsequently leads to a sustainable design.
  18. Kadier A, Ilyas RA, Huzaifah MRM, Harihastuti N, Sapuan SM, Harussani MM, et al.
    Polymers (Basel), 2021 Sep 30;13(19).
    PMID: 34641185 DOI: 10.3390/polym13193365
    A novel nanomaterial, bacterial cellulose (BC), has become noteworthy recently due to its better physicochemical properties and biodegradability, which are desirable for various applications. Since cost is a significant limitation in the production of cellulose, current efforts are focused on the use of industrial waste as a cost-effective substrate for the synthesis of BC or microbial cellulose. The utilization of industrial wastes and byproduct streams as fermentation media could improve the cost-competitiveness of BC production. This paper examines the feasibility of using typical wastes generated by industry sectors as sources of nutrients (carbon and nitrogen) for the commercial-scale production of BC. Numerous preliminary findings in the literature data have revealed the potential to yield a high concentration of BC from various industrial wastes. These findings indicated the need to optimize culture conditions, aiming for improved large-scale production of BC from waste streams.
  19. Ahmad MN, Ishak MR, Taha MM, Mustapha F, Leman Z
    Polymers (Basel), 2021 Oct 29;13(21).
    PMID: 34771297 DOI: 10.3390/polym13213739
    Fused deposition modelling (FDM) is a filament-based rapid prototyping technology that allows new composite materials to be introduced into the FDM process as long as they can be manufactured in feedstock filament form. The purpose of this research was to analyze the rheological behavior of oil palm fiber-reinforced acrylonitrile butadiene styrene (ABS) composites when used as a feedstock material, as well as to determine the best processing conditions for FDM. The composite's shear thinning behavior was observed, and scanning electron microscopy was used to reveal its composition. The morphological result found that there was a good fiber/matrix adhesion with a 3 wt% fiber loading, as no fiber pullouts or gaps developed between the oil palm fiber and ABS. However, some pores and fiber pullouts were found with a 5 and 7 wt% fiber loading. Next, the rheological results showed that the increment of fiber content (wt%) increased the viscosity. This discovery can definitely be used in the extrusion process for making wire filament for FDM. The shear thinning effect was increased by adding 3, 5, or 7 wt% of oil palm fiber. The non-Newtonian index (n) of the composites increased as the number of shear rates increased, indicating that the fiber loading had a significant impact on the rheological behavior. As the fiber loading increased, the viscosity and shear stress values increased as well. As a result, oil fiber reinforced polymer composites can be used as a feedstock filament for FDM.
  20. Mohd Basri MS, Mustapha F, Mazlan N, Ishak MR
    Polymers (Basel), 2021 Oct 29;13(21).
    PMID: 34771303 DOI: 10.3390/polym13213747
    Geopolymer using aluminosilicate sources, such as fly ash, metakaolin and blast furnace slag, possessed excellent fire-retardant properties. However, research on the fire-retardant properties and thermal properties of geopolymer coating using rice husk ash (RHA) is rather limited. Additionally, the approach adopted in past studies on geopolymer coating was the less efficient one-factor-at-a-time (OFAT). A better approach is to employ statistical analysis and a regression coefficient model (mathematical model) in understanding the optimum value and significant effect of factors on fire-retardant and thermal properties of the geopolymer coating. This study aims to elucidate the significance of rice husk ash/activated alkaline solution (RHA/AA) ratio and NaOH concentration on the fire-retardant and thermal properties of RHA-based geopolymer coating, determine the optimum composition and examine the microstructure and element characteristics of the RHA-based geopolymer coating. The factors chosen for this study were the RHA/AA ratio and the NaOH concentration. Rice husk was burnt at a temperature of approximately 600 °C for 24 h to produce RHA. The response surface methodology (RSM) was used to design the experiments and conduct the analyses. Fire-retardant tests and thermal and element characteristics analysis (TGA, XRD, DSC and CTE) were conducted. The microstructure of the geopolymer samples was investigated by using a scanning electron microscope (SEM). The results showed that the RHA/AA ratio had the strongest effect on the temperature at equilibrium (TAE) and time taken to reach 300 °C (TT300). For the optimization process using RSM, the optimum value for TAE and TT300 could be attained when the RHA/AA ratio and NaOH concentration were 0.30 and 6 M, respectively. SEM micrographs of good fire-resistance properties showed a glassy appearance, and the surface coating changed into a dense geopolymer gel covered with thin needles when fired. It showed high insulating capacity and low thermal expansion; it had minimal mismatch with the substrate, and the coating had no evidence of crack formation and had a low dehydration rate. Using RHA as an aluminosilicate source has proven to be a promising alternative. Using it as coating materials can potentially improve fire safety in the construction of residential and commercial buildings.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links