The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available. An understanding of how BSR affects protein expression in plants may help identify and/or assist in the development of an early detection protocol. Although the mode of infection of BSR disease is primarily via the root system, defense-related genes have been shown to be expressed in both the root and leafs. Thus, to provide an insight into the changes in the global protein expression profile in infected plants, comparative 2DE was performed on leaf tissues sampled from palms with and without artificial inoculation of the Ganoderma fungus. Comparative 2DE revealed that 54 protein spots changed in abundance. A total of 51 protein spots were successfully identified by LC-QTOF MS/MS. The majority of these proteins were those involved in photosynthesis, carbohydrate metabolism as well as immunity and defense.
Fungicide is used to control fungal disease by destroying and inhibiting the fungus or fungal spores that cause the disease. However, failure to deliver fungicide to the disease region leads to ineffectiveness in the disease control. Hence, in the present study, nanotechnology has enabled the fungicide active agents (hexaconazole) to be encapsulated into chitosan nanoparticles with the aim of developing a fungicide nanodelivery system that can transport them more effectively to the target cells (Ganoderma fungus). A pathogenic fungus, Ganoderma boninense (G. boninense), is destructive to oil palm whereby it can cause significant loss to oil palm plantations located in the Southeast Asian countries, especially Malaysia and Indonesia. In regard to this matter, a series of chitosan nanoparticles loaded with the fungicide, hexaconazole, was prepared using various concentrations of crosslinking agent sodium tripolyphosphate (TPP). The resulting particle size revealed that the increase of the TPP concentration produced smaller particles. In addition, the in vitro fungicide released at pH 5.5 demonstrated that the fungicide from the nanoparticles was released in a sustainable manner with a prolonged release time up to 86 h. On another note, the in vitro antifungal studies established that smaller particle size leads to lower half maximum effective concentration (EC50) value, which indicates higher antifungal activity against G. boninense.
The use of nanotechnology could play a significant role in the agriculture sector, especially in the preparation of new-generation agronanochemicals. Currently, the economically important plant of Malaysia, the oil palm, faces the threat of a devastating disease which is particularly caused by a pathogenic fungus, Ganoderma boninense. For the development of an effective antifungal agent, a series of chitosan nanoparticles loaded with a fumigant, dazomet, were prepared using various concentrations of sodium tripolyphosphate (TPP)-2.5, 5, 10, and 20 mg/mL, abbreviated as CDEN2.5, CDEN5, CDEN10, and CDEN20, respectively. The effect of TPP as a crosslinking agent on the resulting particle size of the synthesized nanoparticles was investigated using a particle size analyzer and high-resolution transmission electron microscopy (HRTEM). Both methods confirmed that increasing the TPP concentration resulted in smaller particles. In addition, in vitro fumigant release at pH 5.5 showed that the release of the fumigant from the nanoparticles was of a sustained manner, with a prolonged release time up to 24 h. Furthermore, the relationship between the chitosan-dazomet nanoparticles and the in vitro antifungal activity against G. boninense was also explored, where the nanoparticles of the smallest size, CDEN20, gave the highest antifungal efficacy with the lowest half maximum effective concentration (EC50) value of 13.7 ± 1.76 ppb. This indicates that the smaller-sized agronanoparticles were more effective as an antifungal agent. The size can be altered, which plays a crucial role in combatting the Ganoderma disease. The agronanoparticles have controlled release properties and high antifungal efficacy on G. boninense, thus making them a promising candidate to be applied in the field for Ganoderma treatment.
The rise of environmental and health concerns due to the excessive use of the conventional fungicide urges the search for sustainable alternatives of agronanofungicides where the latter is aimed to enhance plant uptake and minimize the volatilization, leaching, and runoff of fungicides. With this in mind, fungicides of hexaconazole and/or dazomet were encapsulated into chitosan nanoparticles for the formulation of chitosan-based agronanofungicides. In the present study, chitosan nanoparticles (2 nm), chitosan-hexaconazole nanoparticles (18 and 168 nm), chitosan-dazomet nanoparticles (7 and 32 nm), and chitosan-hexaconazole-dazomet nanoparticles (5 and 58 nm) were synthesized and used as potent antifungal agents in combating the basal stem rot (BSR) disease caused by Ganoderma boninense in which they were evaluated via an artificial inoculation of oil palm seedlings with the rubber woodblock, which was fully colonized with the fungal Ganoderma boninense mycelium. The results revealed that chitosan nanoparticles could act as dual modes of action, which are themselves as a biocide or as a nanocarrier for the existing fungicides. In addition, the particle size of the chitosan-based agronanofungicides plays a crucial role in suppressing and controlling the disease. The synergistic effect of the double-fungicide system of 5 nm chitosan-hexaconazole-dazomet nanoparticles can be observed as the system showed the highest disease reduction with 74.5%, compared to the untreated infected seedlings.