A simple high-performance liquid chromatographic method using UV detection was developed for the determination of alpha-tocopherol in human plasma. The method entailed direct injection of the plasma sample after deproteinization using acetonitrile-tetrahydrofuran (3:2). The mobile phase comprised methanol-tetrahydrofuran (94:6) and analysis was run at a flow-rate of 1.5 ml/min with the detector operating at 292 nm. A Crestpak C18S (5 microm, 250 mm x 4.6 mm ID) was used for the chromatographic separation. The method had a mean recovery of 93%, while the within-day and between-day coefficients of variation and percentage errors were all less than 7%. The speed, specificity, sensitivity and reproducibility of this method make it particularly suitable for routine determination of alpha-tocopherol in human plasma. Moreover, only a small sample plasma volume (100 microl) is required for the analysis.
A single dose study was conducted to evaluate the bioavailability of a novel self-emulsifying vitamin E preparation, in comparison with that of a commercial product, Natopherol, available as soft gelatin capsules under fasted condition. The self-emulsifying preparation achieved a faster rate and higher extent of absorption. A statistically significant difference was observed between the values of the two preparations in the parameters AUC, Cmax and Tmax. Moreover, the 90% confidence interval of the logarithmic transformed AUC values of the self-emulsifying preparation over those of the soft gelatin capsule product was found to be between 2.1 and 4.1, suggesting an increase in bioavailability of between 210 and 410%. As for Cmax, the 90% confidence interval was between 2.1 and 3.0. However, no statistically significant difference was observed between the t(1/2) values estimated from the plasma concentration versus time data of the two preparations. The values are also comparable to those reported in the literature.
The bioavailability of a generic preparation of ketoconazole (Zorinax from Xepa-Soul Pattinson, Malaysia) was evaluated in comparison with the innovator product (Nizoral from Janssen Pharmaceutica, Switzerland). Eighteen healthy male volunteers participated in the study conducted according to a two-way crossover design. The bioavailability was compared using the parameters, total area under the plasma concentration-time curve (AUC0-infinity), peak plasma concentration (Cmax) and time to reach peak plasma concentration (Tmax). No statistically significant difference was observed between the values of the two products in all the three parameters. Moreover, the 90% confidence interval for the ratio of the logarithmic transformed AUC0-infinity and Cmax values of Zorinax over Nizoral was found to lie between 0.82-1.04 and 0.83-1.02, respectively, being within the acceptable equivalence limit of 0.80-1.25. These findings indicate that the two preparations are comparable in the extent and rate of absorption. In addition, the elimination rate constant (ke) and apparent volume of distribution (Vd) were calculated. For both parameters, there was no statistically significant difference between the values obtained from the data of the two preparations. Moreover, the values are comparable to those reported in the literature.
The bioavailability of a generic preparation of metformin (Diabetmin from Hovid Sdn Bhd) was evaluated in comparison with a proprietary product (Glucophage from Lipha Pharma Ltd., UK).
A simple high-performance liquid chromatographic method using fluorescence detection was developed for the determination of vitamin E especially delta-, gamma- and alpha-tocotrienols in human plasma. The method entailed direct injection of plasma sample after deproteinization using a 3:2 mixture of acetonitrile-tetrahydrofuran. The mobile phase comprised 0.5% (v/v) of distilled water in methanol. Analyses were run at a flow-rate of 1.5 ml/min with the detector operating at an excitation wavelength of 296 nm and emission wavelength of 330 nm. This method is specific and sensitive, with a quantification limit of approximately 40, 34 and 16 ng/ml for alpha-, gamma- and delta-tocotrienol, respectively. The mean absolute recovery values were about 98% while the within-day and between-day relative standard deviation and percent error values of the assay method were all less than 12.0% for alpha-, gamma- and delta-tocotrienol. The calibration curve was linear over a concentration range of 40-2500, 30-4000 and 16-1000 ng/ml for alpha-, gamma- and delta-tocotrienol, respectively. Application of the method in a bioavailability study for determination of the above compounds was also demonstrated.
The bioavailability of a generic preparation of pentoxifylline sustained-release (SR) tablet was evaluated in comparison with a proprietary product (Trental 400). For the study, 12 healthy male volunteers participated; the study was conducted according to a randomized, two-way crossover design. The bioavailability was compared using the parameters total area under the plasma level-time curve AUC0-infinity, peak plasma concentration Cmax, and time to reach peak plasma concentration Tmax. No statistically significant difference was observed between the values of the two products in all three parameters. The 90% confidence interval for the ratio of the logarithmic transformed AUC0-infinity values of the generic pentoxifylline over those of Trental 400 was found to lie between 0.83 and 1.00, while that of the parameter Cmax was between 0.91 and 1.29. In addition, elimination half-life t1/2 and apparent volume of distribution Vd were calculated. There was no statistically significant difference between the t1/2 Vd values obtained from the data of the two preparations.