AIM: The present study was conducted to investigate the possible mechanism of actions underlying the systemic antinociception activity of the essential oil of Zingiber zerumbet (EOZZ) in chemical-induced nociception tests in mice.
MATERIALS AND METHODS: Acetic acid-induced abdominal constriction, capsaicin-, glutamate- and phorbol 12-myristate 13-acetate-induced paw licking tests in mice were employed in the study. In all experiments, EOZZ was administered systemically at the doses of 50, 100, 200 and 300 mg/kg.
RESULTS: It was shown that EOZZ given to mice via intraperitoneal and oral routes at 50, 100, 200 and 300 mg/kg produced significant dose dependent antinociception when assessed using acetic acid-induced abdominal writing test with calculated mean ID(50) values of 88.84 mg/kg (80.88-97.57 mg/kg) and 118.8 mg/kg (102.5-137.8 mg/kg), respectively. Likewise, intraperitoneal administration of EOZZ at similar doses produced significant dose dependent inhibition of neurogenic pain induced by intraplantar injection of capsaicin (1.6 μg/paw), glutamate (10 μmol/paw) and phorbol 12-myristate 13-acetate (1.6μg/paw) with calculated mean ID(50) of 128.8 mg/kg (118.6-139.9 mg/kg), 124.8 mg/kg (111.4-139.7 mg/kg) and 40.29 (35.39-45.86) mg/kg, respectively. It was also demonstrated that pretreatment with l-arginine (100mg/kg, i.p.), a nitric oxide precursor significantly reversed antinociception produced by EOZZ suggesting the involvement of l-arginine/nitric oxide pathway. In addition, methylene blue (20mg/kg, i.p.) significantly enhanced antinociception produced by EOZZ. Administration of glibenclamide (10mg/kg, i.p.), an ATP-sensitive K(+) channel antagonist significantly reversed antinociceptive activity induced by EOZZ.
CONCLUSION: Together, the present results suggested that EOZZ-induced antinociceptive activity was possibly related to its ability to inhibit glutamatergic system, TRPV1 receptors as well as through activation of l-arginine/nitric oxide/cGMP/protein kinase C/ATP-sensitive K(+) channel pathway.
OBJECTIVE: Hence, this study aimed to determine the effects of bedak sejuk made from Oryza sativa ssp. indica (Indica) and Oryza sativa ssp. japonica (Japonica) on UVB-induced B164A5 melanoma cells, and also identify the antioxidant capacities of both types of bedak sejuk.
METHODS: The optimum dose of Indica and Japonica bedak sejuk to treat the cells was determined via the MTT assay. Then, the antioxidant capacities of both types of bedak sejuk were determined using the FRAP assay.
RESULTS: From the MTT assay, it was found that Indica and Japonica bedak sejuk showed no cytotoxic effects towards the cells. Hence, no IC50 can be obtained and two of the higher doses, 50 and 100 g/L were chosen for treatment. In the FRAP assay, Indica bedak sejuk at 50 and 100 g/L showed FRAP values of 0.003 ± 0.001 μg AA (ascorbic acid)/g of bedak sejuk and 0.004 ± 0.0003 μg AA/g of bedak sejuk. Whereas Japonica bedak sejuk at 50 g/L had the same FRAP value as Indica bedak sejuk at 100 g/L. As for Japonica bedak sejuk at 100 g/L, it showed the highest antioxidant capacity with the FRAP value of 0.01 ± 0.0007 μg AA/g of bedak sejuk which was statistically significant (p < 0.05) when compared to other tested concentrations.
CONCLUSION: In conclusion, Japonica bedak sejuk has a higher antioxidant capacity compared to Indica bedak sejuk despite both being not cytotoxic towards the cells. Regardless, further investigations need to be done before bedak sejuk could be developed as potential melanoma chemoprevention agents.