The EtOH extract of the leaves of Holarrhena curtisii yielded five new steroidal alkaloids: 17-epi-holacurtine (3), 17-epi-N-demethylholacurtine (4), holacurtinol (5), 3alpha-amino-14beta-hydroxypregnan-20-one (7), and 15alpha-hydroxyholamine (8), in addition to the known compounds, holacurtine (1), N-demethylholacurtine (2), and holamine (6). All eight compounds showed significant cytotoxic and leishmanicidal activities.
Four new bisindoles of the vobasine-iboga type, conodiparines A-D were obtained from Tabernaemontana corymbosa which showed appreciable activity in reversing resistance in vincristine-resistant KB cells.
Ten new indole alkaloids of the aspidofractinine type, in addition to several recently reported indole alkaloids and 20 other known alkaloids, were obtained from the leaf and stem-bark extract of the Malayan Kopsia singapurensis, viz., kopsimalines A-E (1-5), kopsinicine (6), kopsofinone (7), and kopsiloscines H-J (8-10). The structures of these alkaloids were determined using NMR and MS analysis. Kopsimalines A (1), B (2), C (3), D (4), and E (5) and kopsiloscine J (10) were found to reverse multidrug-resistance in vincristine-resistant KB cells, with 1 showing the highest potency.
Eleven new indole alkaloids, in addition to the previously reported rhazinal (1), and 14 other known alkaloids, were obtained from the Malayan Kopsia singapurensis, viz., kopsiloscines A-F (2-7), 16-epikopsinine (8), kopsilongine- N-oxide (9), 16-epiakuammiline (10), aspidophylline A (11), and vincophylline (12). The structures of these alkaloids were determined using NMR and MS analyses. Rhazinal (1), rhazinilam (17), and rhazinicine (18) showed appreciable cytotoxicity toward drug-sensitive as well as vincristine-resistant KB cells, while kopsiloscines A (2), B (3), and D (5) and aspidophylline A (11) were found to reverse drug-resistance in drug-resistant KB cells.
Nine new indole alkaloids, rhazinoline (1), 19(S)-methoxytubotaiwine (2), 19(R)-methoxytubotaiwine (3), kopsamidine A (4), kopsamidine B (5), kopsinidine A (6), kopsinidine B (7), paucidactine C (8), and pericine N-oxide (9), in addition to several recently reported novel indoles and 34 other known ones, were obtained from the stem-bark extract of the Malayan Kopsia arborea. The structures were determined using NMR and MS analysis. Valparicine (12) showed pronounced cytotoxic effects against KB and Jurkat cells (IC(50) 13.0 and 0.91 microM, respectively).
A series of indole alkaloids of the ibogan-type was assessed for their cytotoxic effects as well as their potential in reversing MDR in vincristine-resistant KB cells. Of a total of 25 compounds tested, 3(S)-cyanocoronaridine, 3(S)-cyanoisovoacangine, 3(S)-cyanovoacangine, and 10,11-demethoxychippiine were found to show appreciable cytotoxicity toward KB cells, while coronaridine, heyneanine, 19-epi-heyneanine, dippinine B, and dippinine C, were found to reverse MDR in vincristine-resistant KB cells.
A series of indole alkaloids of the aspidofractinine-type was assessed for their potential in reversing MDR in vincristine-resistant KB cells. Of the compounds tested, kopsiflorine, kopsamine, pleiocarpine, 11-methoxykopsilongine, lahadinine A and N-methoxycarbonyl-11,12-methylenedioxy-delta 16,17-kopsinine were found to show appreciable activity.