Displaying all 8 publications

Abstract:
Sort:
  1. Bandyopadhyay S, Lum LC, Kroeger A
    Trop Med Int Health, 2006 Aug;11(8):1238-55.
    PMID: 16903887 DOI: 10.1111/j.1365-3156.2006.01678.x
    BACKGROUND: The current World Health Organisation (WHO) classification of dengue includes two distinct entities: dengue fever (DF) and dengue haemorrhagic fever (DHF)/dengue shock syndrome; it is largely based on pediatric cases in Southeast Asia. Dengue has extended to different tropical areas and older age groups. Variations from the original description of dengue manifestations are being reported.
    OBJECTIVES: To analyse the experience of clinicians in using the dengue case classification and identify challenges in applying the criteria in routine clinical practice.
    METHOD: Systematic literature review of post-1975 English-language publications on dengue classification.
    RESULTS: Thirty-seven papers were reviewed. Several studies had strictly applied all four WHO criteria in DHF cases; however, most clinicians reported difficulties in meeting all four criteria and used a modified classification. The positive tourniquet test representing the minimum requirement of a haemorrhagic manifestation did not distinguish between DHF and DF. In cases of DHF thrombocytopenia was observed in 8.6-96%, plasma leakage in 6-95% and haemorrhagic manifestations in 22-93%. The low sensitivity of classifying DHF could be due to failure to repeat the tests or physical examinations at the appropriate time, early intravenous fluid therapy, and lack of adequate resources in an epidemic situation and perhaps a considerable overlap of clinical manifestations in the different dengue entities.
    CONCLUSION: A prospective multi-centre study across dengue endemic regions, age groups and the health care system is required which describes the clinical presentation of dengue including simple laboratory parameters in order to review and if necessary modify the current dengue classification.
  2. Horstick O, Jaenisch T, Martinez E, Kroeger A, See LL, Farrar J, et al.
    Am J Trop Med Hyg, 2014 Sep;91(3):621-34.
    PMID: 24957540 DOI: 10.4269/ajtmh.13-0676
    The 1997 and 2009 WHO dengue case classifications were compared in a systematic review with 12 eligible studies (4 prospective). Ten expert opinion articles were used for discussion. For the 2009 WHO classification studies show: when determining severe dengue sensitivity ranges between 59-98% (88%/98%: prospective studies), specificity between 41-99% (99%: prospective study) - comparing the 1997 WHO classification: sensitivity 24.8-89.9% (24.8%/74%: prospective studies), specificity: 25%/100% (100%: prospective study). The application of the 2009 WHO classification is easy, however for (non-severe) dengue there may be a risk of monitoring increased case numbers. Warning signs validation studies are needed. For epidemiological/pathogenesis research use of the 2009 WHO classification, opinion papers show that ease of application, increased sensitivity (severe dengue) and international comparability are advantageous; 3 severe dengue criteria (severe plasma leakage, severe bleeding, severe organ manifestation) are useful research endpoints. The 2009 WHO classification has clear advantages for clinical use, use in epidemiology is promising and research use may at least not be a disadvantage.
  3. Runge-Ranzinger S, Kroeger A, Olliaro P, McCall PJ, Sánchez Tejeda G, Lloyd LS, et al.
    PLoS Negl Trop Dis, 2016 Sep;10(9):e0004916.
    PMID: 27653786 DOI: 10.1371/journal.pntd.0004916
    BACKGROUND: Dengue is an increasingly incident disease across many parts of the world. In response, an evidence-based handbook to translate research into policy and practice was developed. This handbook facilitates contingency planning as well as the development and use of early warning and response systems for dengue fever epidemics, by identifying decision-making processes that contribute to the success or failure of dengue surveillance, as well as triggers that initiate effective responses to incipient outbreaks.

    METHODOLOGY/PRINCIPAL FINDINGS: Available evidence was evaluated using a step-wise process that included systematic literature reviews, policymaker and stakeholder interviews, a study to assess dengue contingency planning and outbreak management in 10 countries, and a retrospective logistic regression analysis to identify alarm signals for an outbreak warning system using datasets from five dengue endemic countries. Best practices for managing a dengue outbreak are provided for key elements of a dengue contingency plan including timely contingency planning, the importance of a detailed, context-specific dengue contingency plan that clearly distinguishes between routine and outbreak interventions, surveillance systems for outbreak preparedness, outbreak definitions, alert algorithms, managerial capacity, vector control capacity, and clinical management of large caseloads. Additionally, a computer-assisted early warning system, which enables countries to identify and respond to context-specific variables that predict forthcoming dengue outbreaks, has been developed.

    CONCLUSIONS/SIGNIFICANCE: Most countries do not have comprehensive, detailed contingency plans for dengue outbreaks. Countries tend to rely on intensified vector control as their outbreak response, with minimal focus on integrated management of clinical care, epidemiological, laboratory and vector surveillance, and risk communication. The Technical Handbook for Surveillance, Dengue Outbreak Prediction/ Detection and Outbreak Response seeks to provide countries with evidence-based best practices to justify the declaration of an outbreak and the mobilization of the resources required to implement an effective dengue contingency plan.

  4. Asaga Mac P, Tadele M, Airiohuodion PE, Nisansala T, Zubair S, Aigohbahi J, et al.
    Ann Med, 2023 Dec;55(1):652-662.
    PMID: 37074313 DOI: 10.1080/07853890.2023.2175903
    INTRODUCTION: Mosquito-borne infections are of global health concern because of their rapid spread and upsurge, which creates a risk for coinfections. DENV and ZIKV are transmitted by Aedes aegypti and A. albopictus and are prevalent in Nigeria and neighbouring countries. However, their seroprevalence, burden, hidden endemicity and possible cocirculation are poorly understood in Nigeria.

    METHODS: We conducted a cross-sectional study of 871 participants from three regions of Nigeria. All serum samples were analysed using malaria RDT and the immunoblot molecular diagnostic assay recomLine Tropical Fever for the presence of arboviral antibody serological marker IgG (Mikrogen Diagnostik, Neuried, Germany) with DENV and ZIKV Nonstructural protein 1 (NS 1), DENV and ZIKV Equad (variant of the envelope protein with designated mutations to increase specificity), according to the manufacturer's instructions.

    RESULTS: The overall IgG antibody seropositivity against DENV-flavivirus was 44.7% (389/871); 95% CI (41.41-47.99), while ZIKV-flavivirus was 19.2% (167/871); 95% CI (0.16-0.21), and DENV-ZIKV-flavivirus cocirculation antibody seropositivity was 6.2%5 (54/871); 95% CI (0.6-0.7) in the three study regions of Nigeria. The study cohort presented similar clinical signs and symptoms of flaviviruses (DENV and ZIKV) in all three study regions.

    CONCLUSION: This study highlighted an unexpectedly high antibody seropositivity, burden, hidden endemicity, and regional spread of mono- and co-circulating flaviviruses (DENV and ZIKV) in Nigeria.Key messagesDengue flavivirus sero-cross-reactivity drives antibody-dependent enhancement of ZIKV infection.Both viruses share common hosts (humans) and vectors (primarily Aedes aegypti), and are thus influenced by similar biological, ecological, and economic factors, resulting in epidemiological synergy.Additionally, the actual burden in epidemic and interepidemic periods is grossly or chronically unknown and underreported. Despite this trend and the potential public health threat, there are no reliable data, and little is known about these arboviral co-circulation infections.

  5. Badurdeen S, Valladares DB, Farrar J, Gozzer E, Kroeger A, Kuswara N, et al.
    BMC Public Health, 2013 Jun 24;13:607.
    PMID: 23800243 DOI: 10.1186/1471-2458-13-607
    BACKGROUND: The increasing frequency and intensity of dengue outbreaks in endemic and non-endemic countries requires a rational, evidence based response. To this end, we aimed to collate the experiences of a number of affected countries, identify strengths and limitations in dengue surveillance, outbreak preparedness, detection and response and contribute towards the development of a model contingency plan adaptable to country needs.

    METHODS: The study was undertaken in five Latin American (Brazil, Colombia, Dominican Republic, Mexico, Peru) and five in Asian countries (Indonesia, Malaysia, Maldives, Sri Lanka, Vietnam). A mixed-methods approach was used which included document analysis, key informant interviews, focus-group discussions, secondary data analysis and consensus building by an international dengue expert meeting organised by the World Health Organization, Special Program for Research and Training in Tropical Diseases (WHO-TDR).

    RESULTS: Country information on dengue is based on compulsory notification and reporting ("passive surveillance"), with laboratory confirmation (in all participating Latin American countries and some Asian countries) or by using a clinical syndromic definition. Seven countries additionally had sentinel sites with active dengue reporting, some also had virological surveillance. Six had agreed a formal definition of a dengue outbreak separate to seasonal variation in case numbers. Countries collected data on a range of warning signs that may identify outbreaks early, but none had developed a systematic approach to identifying and responding to the early stages of an outbreak. Outbreak response plans varied in quality, particularly regarding the early response. The surge capacity of hospitals with recent dengue outbreaks varied; those that could mobilise additional staff, beds, laboratory support and resources coped best in comparison to those improvising a coping strategy during the outbreak. Hospital outbreak management plans were present in 9/22 participating hospitals in Latin-America and 8/20 participating hospitals in Asia.

    CONCLUSIONS: Considerable variation between countries was observed with regard to surveillance, outbreak detection, and response. Through discussion at the expert meeting, suggestions were made for the development of a more standardised approach in the form of a model contingency plan, with agreed outbreak definitions and country-specific risk assessment schemes to initiate early response activities according to the outbreak phase. This would also allow greater cross-country sharing of ideas.

  6. Hussain-Alkhateeb L, Kroeger A, Olliaro P, Rocklöv J, Sewe MO, Tejeda G, et al.
    PLoS One, 2018;13(5):e0196811.
    PMID: 29727447 DOI: 10.1371/journal.pone.0196811
    BACKGROUND: Dengue outbreaks are increasing in frequency over space and time, affecting people's health and burdening resource-constrained health systems. The ability to detect early emerging outbreaks is key to mounting an effective response. The early warning and response system (EWARS) is a toolkit that provides countries with early-warning systems for efficient and cost-effective local responses. EWARS uses outbreak and alarm indicators to derive prediction models that can be used prospectively to predict a forthcoming dengue outbreak at district level.

    METHODS: We report on the development of the EWARS tool, based on users' recommendations into a convenient, user-friendly and reliable software aided by a user's workbook and its field testing in 30 health districts in Brazil, Malaysia and Mexico.

    FINDINGS: 34 Health officers from the 30 study districts who had used the original EWARS for 7 to 10 months responded to a questionnaire with mainly open-ended questions. Qualitative content analysis showed that participants were generally satisfied with the tool but preferred open-access vs. commercial software. EWARS users also stated that the geographical unit should be the district, while access to meteorological information should be improved. These recommendations were incorporated into the second-generation EWARS-R, using the free R software, combined with recent surveillance data and resulted in higher sensitivities and positive predictive values of alarm signals compared to the first-generation EWARS. Currently the use of satellite data for meteorological information is being tested and a dashboard is being developed to increase user-friendliness of the tool. The inclusion of other Aedes borne viral diseases is under discussion.

    CONCLUSION: EWARS is a pragmatic and useful tool for detecting imminent dengue outbreaks to trigger early response activities.

  7. Bowman LR, Tejeda GS, Coelho GE, Sulaiman LH, Gill BS, McCall PJ, et al.
    PLoS One, 2016;11(6):e0157971.
    PMID: 27348752 DOI: 10.1371/journal.pone.0157971
    BACKGROUND: Worldwide, dengue is an unrelenting economic and health burden. Dengue outbreaks have become increasingly common, which place great strain on health infrastructure and services. Early warning models could allow health systems and vector control programmes to respond more cost-effectively and efficiently.

    METHODOLOGY/PRINCIPAL FINDINGS: The Shewhart method and Endemic Channel were used to identify alarm variables that may predict dengue outbreaks. Five country datasets were compiled by epidemiological week over the years 2007-2013. These data were split between the years 2007-2011 (historic period) and 2012-2013 (evaluation period). Associations between alarm/ outbreak variables were analysed using logistic regression during the historic period while alarm and outbreak signals were captured during the evaluation period. These signals were combined to form alarm/ outbreak periods, where 2 signals were equal to 1 period. Alarm periods were quantified and used to predict subsequent outbreak periods. Across Mexico and Dominican Republic, an increase in probable cases predicted outbreaks of hospitalised cases with sensitivities and positive predictive values (PPV) of 93%/ 83% and 97%/ 86% respectively, at a lag of 1-12 weeks. An increase in mean temperature ably predicted outbreaks of hospitalised cases in Mexico and Brazil, with sensitivities and PPVs of 79%/ 73% and 81%/ 46% respectively, also at a lag of 1-12 weeks. Mean age was predictive of hospitalised cases at sensitivities and PPVs of 72%/ 74% and 96%/ 45% in Mexico and Malaysia respectively, at a lag of 4-16 weeks.

    CONCLUSIONS/SIGNIFICANCE: An increase in probable cases was predictive of outbreaks, while meteorological variables, particularly mean temperature, demonstrated predictive potential in some countries, but not all. While it is difficult to define uniform variables applicable in every country context, the use of probable cases and meteorological variables in tailored early warning systems could be used to highlight the occurrence of dengue outbreaks or indicate increased risk of dengue transmission.

  8. Olliaro P, Fouque F, Kroeger A, Bowman L, Velayudhan R, Santelli AC, et al.
    PLoS Negl Trop Dis, 2018 02;12(2):e0005967.
    PMID: 29389959 DOI: 10.1371/journal.pntd.0005967
    BACKGROUND: Research has been conducted on interventions to control dengue transmission and respond to outbreaks. A summary of the available evidence will help inform disease control policy decisions and research directions, both for dengue and, more broadly, for all Aedes-borne arboviral diseases.

    METHOD: A research-to-policy forum was convened by TDR, the Special Programme for Research and Training in Tropical Diseases, with researchers and representatives from ministries of health, in order to review research findings and discuss their implications for policy and research.

    RESULTS: The participants reviewed findings of research supported by TDR and others. Surveillance and early outbreak warning. Systematic reviews and country studies identify the critical characteristics that an alert system should have to document trends reliably and trigger timely responses (i.e., early enough to prevent the epidemic spread of the virus) to dengue outbreaks. A range of variables that, according to the literature, either indicate risk of forthcoming dengue transmission or predict dengue outbreaks were tested and some of them could be successfully applied in an Early Warning and Response System (EWARS). Entomological surveillance and vector management. A summary of the published literature shows that controlling Aedes vectors requires complex interventions and points to the need for more rigorous, standardised study designs, with disease reduction as the primary outcome to be measured. House screening and targeted vector interventions are promising vector management approaches. Sampling vector populations, both for surveillance purposes and evaluation of control activities, is usually conducted in an unsystematic way, limiting the potentials of entomological surveillance for outbreak prediction. Combining outbreak alert and improved approaches of vector management will help to overcome the present uncertainties about major risk groups or areas where outbreak response should be initiated and where resources for vector management should be allocated during the interepidemic period.

    CONCLUSIONS: The Forum concluded that the evidence collected can inform policy decisions, but also that important research gaps have yet to be filled.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links