Displaying all 10 publications

Abstract:
Sort:
  1. Ravindra Babu M, Vishwas S, Gulati M, Dua K, Kumar Singh S
    Drug Discov Today, 2024 Jul;29(7):104030.
    PMID: 38762087 DOI: 10.1016/j.drudis.2024.104030
    In recent years, microneedles (MNs) have been transformed to serve a wide range of applications in the biomedical field. Their role as sensors in wearable devices has provided an alternative to blood-based monitoring of health and diagnostic methods. Hence, they have become a topic of research interest for several scientists working in the biomedical field. These MNs as sensors offer the continuous monitoring of biomarkers like glucose, nucleic acids, proteins, polysaccharides and electrolyte ions, which can therefore screen for and diagnose disease conditions in humans. The present review focuses on types of MN sensors and their applications. Various clinical trials and bottlenecks of MN R&D are also discussed.
  2. Kakoty V, Kalarikkal Chandran S, Gulati M, Goh BH, Dua K, Kumar Singh S
    Drug Discov Today, 2023 Jun;28(6):103582.
    PMID: 37023942 DOI: 10.1016/j.drudis.2023.103582
    Aging is one of the major risk factors for most neurodegenerative disorders including Parkinson's disease (PD). More than 10 million people are affected with PD worldwide. One of the predominant factors accountable for progression of PD pathology could be enhanced accumulation of senescent cells in the brain with the progress of age. Recent investigations have highlighted that senescent cells can ignite PD pathology via increased oxidative stress and neuroinflammation. Senolytics are agents that kill senescent cells. This review mainly focuses on understanding the pathological connection between senescence and PD, with emphasis on some of the recent advances made in the area of senolytics and their evolution to potential clinical candidates for future pharmaceuticals against PD.
  3. Chan Y, Ng SW, Mehta M, Anand K, Kumar Singh S, Gupta G, et al.
    Med Hypotheses, 2020 Nov;144:110298.
    PMID: 33254489 DOI: 10.1016/j.mehy.2020.110298
    Outbreaks of influenza infections in the past have severely impacted global health and socioeconomic growth. Antivirals and vaccines are remarkable medical innovations that have been successful in reducing the rates of morbidity and mortality from this disease. However, the relentless emergence of drug resistance has led to a worrisome increase in the trend of influenza outbreaks, characterized by worsened clinical outcomes as well as increased economic burden. This has prompted the need for breakthrough innovations that can effectively manage influenza outbreaks. This article provides an insight into a novel hypothesis that describes how the integration of nanomedicine, with the development of drugs and vaccines can potentially enhance body immune response and the efficacies of anti-viral therapeutics to combat influenza infections.
  4. Vihal S, Pundir S, Rathore C, Ranjan Lal U, Gupta G, Kumar Singh S, et al.
    Curr Drug Deliv, 2024 Jul 02.
    PMID: 38956909 DOI: 10.2174/0115672018246645231019131748
    BACKGROUND: The therapeutic effect of NS oil in mild to moderate psoriasis is limited owing to low play load of thymoquinone ( < 15 %w/w), irritation, dripping, low viscosity and thus, less contact time on the lesions.

    AIMS: This study aimed at developing and characterizing the ethanolic vesicular hydrogel system of Nigella sativa (NS) oil (NS EV hydrogel) for the enhancement of anti-psoriatic activity.

    OBJECTIVE: The objective of this study was to develop NS EV hydrogel and evaluate its anti-psoriatic activity.

    METHODS: The identification and quantification of TQ content in different NS seed extracts and marketed oil were measured by an HPTLC method using n-hexane and ethyl acetate as solvent systems. Preparation of ethanolic vesicles (EVs) was performed by solvent injection method, while its antipsoriatic activity was evaluated employing an Imiquad (IMQ)-induced plaque psoriasis animal model.

    RESULTS: A compact HPTLC band was obtained for TQ at an Rf value of 0.651. The calibration plot was linear in the range of 1-10 μg/spot, and the correlation coefficient of 0.990 was indicative of good linear dependence of peak area on concentration. From the different NS sources, the high TQ content was obtained in the marketed cold press oil, i.e., 1.45±0.08mg/ml. Out of various NS oilloaded EVs, the F6 formulation revealed the smallest particle size (278.1nm), with log-normal size distribution (0.459) and adequate entrapment efficiency. A non-uniform shape was observed in the transmission electron microscopy. The viscosity of F6 formulation hydrogel was 32.34 (Pa·s), which exhibited plastic behavior. In vivo, efficacy studies demonstrated decreased inflammation of the epidermis and dermis and a marked decrease in the levels of IL-17 by NS EV hydrogel compared to plain NS oil and standard drugs (Betamethasone and Dr. JRK Psorolin Oil).

    CONCLUSION: It may be concluded from the findings that NS-loaded EV gel was as good as betamethasone cream but more efficacious than the other treatments.

  5. Gulati N, Kumar Chellappan D, M Tambuwala M, A A Aljabali A, Prasher P, Kumar Singh S, et al.
    Assay Drug Dev Technol, 2021 05 14;19(4):246-261.
    PMID: 33989048 DOI: 10.1089/adt.2021.012
    Nanoemulsions (NMs) are one of the most important colloidal dispersion systems that are primarily used to improve the solubility of poorly water soluble drugs. The main objectives of this study were, first, to prepare an NM loaded with fenofibrate using a high shear homogenization technique and, second, to study the effect of variable using a central composite design. Twenty batches of fenofibrate-loaded NM formulations were prepared. The formed NMs were subjected to droplet size analysis, zeta potential, entrapment efficiency, pH, dilution, polydispersity index, transmission electron microscopy (TEM), Fourier transform infrared spectrophotometry, differential scanning calorimetry (DSC), and in vitro drug release study. Analysis of variance was used for entrapment efficiency data to study the fitness and significance of the design. The NM-7 batch formulation demonstrated maximum entrapment efficiency (81.82%) with lowest droplet size (72.28 nm), and was thus chosen as the optimized batch. TEM analysis revealed that the NM was well dispersed with droplet sizes <100 nm. Incorporation of the drug into the NM was confirmed with DSC studies. In addition, the batch NM-7 also showed the maximum in vitro drug release (87.6%) in a 0.05 M sodium lauryl sulfate solution. The release data revealed that the NM followed first-order kinetics. The outcomes of the study revealed the development of a stable oral NM containing fenofibrate using the high shear homogenization technique. This approach may aid in further enhancing the oral bioavailability of fenofibrate, which requires further in vivo studies.
  6. Kar R, Jha SK, Ojha S, Sharma A, Dholpuria S, Raju VSR, et al.
    Cancer Rep (Hoboken), 2021 08;4(4):e1369.
    PMID: 33822486 DOI: 10.1002/cnr2.1369
    BACKGROUND: Ubiquitin ligases or E3 ligases are well programmed to regulate molecular interactions that operate at a post-translational level. Skp, Cullin, F-box containing complex (or SCF complex) is a multidomain E3 ligase known to mediate the degradation of a wide range of proteins through the proteasomal pathway. The three-dimensional domain architecture of SCF family proteins suggests that it operates through a novel and adaptable "super-enzymatic" process that might respond to targeted therapeutic modalities in cancer.

    RECENT FINDINGS: Several F-box containing proteins have been characterized either as tumor suppressors (FBXW8, FBXL3, FBXW8, FBXL3, FBXO1, FBXO4, and FBXO18) or as oncogenes (FBXO5, FBXO9, and SKP2). Besides, F-box members like βTrcP1 and βTrcP2, the ones with context-dependent functionality, have also been studied and reported. FBXW7 is a well-studied F-box protein and is a tumor suppressor. FBXW7 regulates the activity of a range of substrates, such as c-Myc, cyclin E, mTOR, c-Jun, NOTCH, myeloid cell leukemia sequence-1 (MCL1), AURKA, NOTCH through the well-known ubiquitin-proteasome system (UPS)-mediated degradation pathway. NOTCH signaling is a primitive pathway that plays a crucial role in maintaining normal tissue homeostasis. FBXW7 regulates NOTCH protein activity by controlling its half-life, thereby maintaining optimum protein levels in tissue. However, aberrations in the FBXW7 or NOTCH expression levels can lead to poor prognosis and detrimental outcomes in patients. Therefore, the FBXW7-NOTCH axis has been a subject of intense study and research over the years, especially around the interactome's role in driving cancer development and progression. Several studies have reported the effect of FBXW7 and NOTCH mutations on normal tissue behavior. The current review attempts to critically analyze these mutations prognostic value in a wide range of tumors. Furthermore, the review summarizes the recent findings pertaining to the FBXW7 and NOTCH interactome and its involvement in phosphorylation-related events, cell cycle, proliferation, apoptosis, and metastasis.

    CONCLUSION: The review concludes by positioning FBXW7 as an effective diagnostic marker in tumors and by listing out recent advancements made in cancer therapeutics in identifying protocols targeting the FBXW7-NOTCH aberrations in tumors.

  7. Thapa R, Ahmad Bhat A, Shahwan M, Ali H, PadmaPriya G, Bansal P, et al.
    Brain Res, 2024 Aug 30;1845:149202.
    PMID: 39216694 DOI: 10.1016/j.brainres.2024.149202
    Alzheimer's Disease (AD) is a progressive neurological disease associated with behavioral abnormalities, memory loss, and cognitive impairment that cause major causes of dementia in the elderly. The pathogenetic processes cause complex effects on brain function and AD progression. The proper protein homeostasis, or proteostasis, is critical for cell health. AD causes the buildup of misfolded proteins, particularly tau and amyloid-beta, to break down proteostasis, such aggregates are toxic to neurons and play a critical role in AD pathogenesis. The rise of cellular senescence is accompanied by aging, marked by irreversible cell cycle arrest and the release of pro-inflammatory proteins. Senescent cell build-up in the brains of AD patients exacerbates neuroinflammation and neuronal degeneration. These cells senescence-associated secretory phenotype (SASP) also disturbs the brain environment. When proteostasis failure and cellular senescence coalesce, a cycle is generated that compounds each other. While senescent cells contribute to proteostasis breakdown through inflammatory and degradative processes, misfolded proteins induce cellular stress and senescence. The principal aspects of the neurodegenerative processes in AD are the interaction of cellular senescence and proteostasis failure. This review explores the interconnected roles of proteostasis disruption and cellular senescence in the pathways leading to neurodegeneration in AD.
  8. Neuhann JM, Stemler J, Carcas AJ, Frías-Iniesta J, Akova M, Bethe U, et al.
    Vaccine, 2023 Nov 22;41(48):7166-7175.
    PMID: 37919141 DOI: 10.1016/j.vaccine.2023.10.029
    BACKGROUND: Vaccination remains crucial for protection against severe SARS-CoV-2 infection, especially for people of advanced age, however, optimal dosing regimens are as yet lacking.

    METHODS: EU-COVAT-1-AGED Part A is a randomised controlled, adaptive, multicentre phase II trial evaluating safety and immunogenicity of a 3rd vaccination (1st booster) in individuals ≥75 years. Fifty-three participants were randomised to full-doses of either mRNA-1273 (Spikevax®, 100 µg) or BNT162b2 (Comirnaty®, 30 µg). The primary endpoint was the rate of 2-fold circulating antibody titre increase 14 days post-vaccination measured by quantitative electrochemiluminescence (ECL) immunoassay, targeting RBD region of Wuhan wild-type SARS-CoV-2. Secondary endpoints included the changes in neutralising capacity against wild-type and 25 variants of concern at 14 days and up to 12 months. Safety was assessed by monitoring of solicited adverse events (AEs) for seven days after on-study vaccination. Unsolicited AEs were collected until the end of follow-up at 12 months, SAEs were pursued for a further 30 days.

    RESULTS: Between 08th of November 2021 and 04th of January 2022, 53 participants ≥75 years received a COVID-19 vaccine as 1st booster. Fifty subjects (BNT162b2 n = 25/mRNA-1273 n = 25) were included in the analyses for immunogenicity at day 14. The primary endpoint of a 2-fold anti-RBD IgG titre increase 14 days after vaccination was reached for all subjects. A 3rd vaccination of full-dose mRNA-1273 provided higher anti-RBD IgG titres (Geometric mean titre) D14 mRNA-127310711 IU/mL (95 %-CI: 8003;14336) vs. BNT162b2: 7090 IU/mL (95 %-CI: 5688;8837). We detected a pattern showing higher neutralising capacity of full-dose mRNA-1273 against wild-type as well as for 23 out of 25 tested variants.

    INTERPRETATION: Third doses of either BNT162b2 or mRNA-1273 provide substantial circulating antibody increase 14 days after vaccination. Full-dose mRNA-1273 provides higher antibody levels with an overall similar safety profile for people ≥75 years.

    FUNDING: This trial was funded by the European Commission (Framework Program HORIZON 2020).

  9. Stemler J, Yeghiazaryan L, Stephan C, Mohn KG, Carcas-Sansuan AJ, Rodriguez ER, et al.
    Int J Infect Dis, 2024 Jul 09;146:107161.
    PMID: 38992789 DOI: 10.1016/j.ijid.2024.107161
    OBJECTIVES: To assess the safety and immunogenicity of a fourth vaccination (second booster) in individuals aged ≥75 years.

    METHODS: Participants were randomized to BNT162b2 (Comirnaty, 30 µg) or messenger RNA (mRNA)-1273 (Spikevax, 100 µg). The primary end point was the rate of two-fold antibody titer increase 14 days after vaccination, targeting the receptor binding domain (RBD) region of wild-type SARS-CoV-2. The secondary end points included changes in neutralizing activity against wild-type and 25 variants. Safety was assessed by monitoring solicited adverse events (AEs) for 7 days.

    RESULTS: A total of 269 participants (mean age 81 years, mRNA-1273 n = 135/BNT162b2 n = 134) were included. Two-fold anti-RBD immunoglobulin (Ig) G titer increase was achieved by 101 of 129 (78%) and 116 of 133 (87%) subjects in the BNT162b2 and the mRNA-1273 group, respectively (P = 0.054). A second booster of mRNA-1273 provided higher anti-RBD IgG geometric mean titer: 21.326 IU/mL (95% confidence interval: 18.235-24.940) vs BNT162b2: 15.181 IU/mL (95% confidence interval: 13.172-17.497). A higher neutralizing activity was noted for the mRNA-1273 group. The most frequent AE was pain at the injection site (51% in mRNA-1273 and 48% in BNT162b2). Participants in the mRNA-1273 group had less vaccine-related AEs (30% vs 39%).

    CONCLUSIONS: A second booster of either BNT162b2 or mRNA-1273 provided substantial IgG increase. Full-dose mRNA-1273 provided higher IgG levels and neutralizing capacity against SARS-CoV-2, with similar safety profile for subjects of advanced age.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links