METHODS: We searched PubMed/Medline, Web of Science, and Cochrane Library from the inception of the database to November 2022. All studies that compared LBBP with BVP in patients with HFrEF and indications for CRT were included. Two reviewers performed study selection, data abstraction, and risk of bias assessment. We calculated risk ratios (RRs) with the Mantel-Haenszel method and mean difference (MD) with inverse variance using random effect models. We assessed heterogeneity using the I2 index, with I2 > 50% indicating significant heterogeneity.
RESULTS: Ten studies (9 observational studies and 1 randomized controlled trial; 616 patients; 15 centers) published between 2020 and 2022 were included. We observed a shorter fluoroscopy time (MD: 9.68, 95% confidence interval [CI]: 4.49-14.87, I2 = 95%, p p p p p = .04, millimeter). There was a greater improvement in New York Heart Association function class with LBBP (MD: 0.37, 95% CI: 0.05-0.68, I2 = 61%, p = .02). LBBP was also associated with a lower risk of a composite of heart failure hospitalizations (HFH) and all-cause mortality (RR: 0.48, 95% CI: 0.25-0.90, I2 = 0%, p = .02) driven by reduced HFH (RR: 0.39, 95% CI: 0.19-0.82, I2 = 0%, p = .01). However, all-cause mortality rates were low in both groups (1.52% vs. 1.13%) and similar (RR: 0.98, 95% CI: 0.21-4.68, I2 = 0%, p = .87).
CONCLUSION: This meta-analysis of primarily nonrandomized studies suggests that LBBP is associated with a greater improvement in left ventricular systolic function and a lower rate of HFH compared to BVP. There was uniformity of these findings in all of the included studies. However, it would be premature to conclude based solely on the current meta-analysis alone, given the limitations stated. Dedicated, well-designed, randomized controlled trials and observational studies are needed to elucidate better the comparative long-term efficacy and safety of LBBP CRT versus BIV CRT.
Objective: To investigate the acceptability and pharmacokinetics (PK) of SC injection of TU.
Design: Randomized sequence, crossover clinical study of SC vs IM TU injections.
Setting: Ambulatory clinic of an academic andrology center.
Participants: Twenty men (11 hypogonadal, 9 transgender men) who were long-term users of TU. injections. Intervention: Injection of 1000 mg TU (in 4 mL castor oil vehicle) by SC or IM route. Main Outcome Measures: Patient-reported pain, acceptability, and preference scales. PK by measurement of serum testosterone, dihydrotestosterone (DHT), and estradiol (E2) concentrations with application of population PK methods and dried blood spot (DBS) sampling.
Results: Pain was greater after SC compared with IM injection 24 hours (but not immediately) after injection but both routes were equally acceptable. Ultimately 11 preferred IM, 6 preferred SC, and 3 had no preference. The DBS-based PK analysis of serum testosterone revealed a later time of peak testosterone concentration after SC vs IM injection (8.0 vs 3.3 days) but no significant route differences in model-predicted peak testosterone concentration (8.4 vs 9.6 ng/mL) or mean resident time (183 vs 110 days). The PK of venous serum testosterone, DHT, and E2 did not differ according to route of injection.
Conclusions: We conclude that SC TU injection is acceptable but produces greater pain 24 hours after injection that may contribute to the overall majority preference for the IM injection. The PK of testosterone, DHT, or E2 did not differ substantially between SC and IM routes. Hence whereas further studies are required, the SC route represents an alternative to IM injections without a need to change dose for men for whom IM injection is not desired or recommended.
AIM: To investigate the utility of a Traffic Light Control (TLC) system as a measurement/assessment of self-perceived eczema control.
METHODS: This is a prospectively study of all Chinese children (aged 6 to 18 years old) with eczema attending the paediatric dermatology clinic of a tertiary hospital from Jan to June 2020. Eczema control, eczema severity, quality of life and biophysical skin condition of consecutive patients at the paediatric dermatology clinic of a teaching hospital were evaluated with the validated Chinese versions of Depressive, Anxiety, Stress Scales (DASS-21), Patient Oriented Eczema Measure (POEM), transepidermal water loss (TEWL), and stratum corneum skin hydration (SH), respectively. With a visual TLC analogy, patients were asked if their eczema is under control (green light), worsening (yellow) or in flare-up (red light).
RESULTS: Among AE patients (n = 36), self-perceived TLC as green (under control), amber (worsening) and red (flare up) reflected acute and chronic severity (SCORAD, NESS, POEM) and quality of life (CDLQI) (p< 0.0001), but not SH, TEWL or Depression, anxiety and stress.
CONCLUSIONS: Eczema control can be semi-quantified with a child-friendly TLC self-assessment system. AE patients reporting worse eczema control have worse acute and chronic eczema severity, more impairment of quality of life; but not the psychologic symptoms of depression, anxiety and stress or skin hydration or transepidermal water loss. TLC can be linked to an eczema action plan to guide patient management.