Displaying all 3 publications

Abstract:
Sort:
  1. Haseeb A, Faidah HS, Bakhsh AR, Malki WH, Elrggal ME, Saleem F, et al.
    Int J Infect Dis, 2016 Jun;47:92-4.
    PMID: 27312582 DOI: 10.1016/j.ijid.2016.06.006
    OBJECTIVE: To identify commonly reported community-acquired organisms and antimicrobial resistance patterns exhibited by Gram-positive and Gram-negative pathogens among pilgrims visiting emergency care departments in Makkah.
    METHOD: The study was designed as a retrospective audit of all patients (pilgrims) admitted to two hospitals and residing in the city of Makkah, Saudi Arabia.
    RESULTS: Among 374 isolates, Gram-negative pathogens accounted for 280 (75%), while the remaining 94 (25%) were Gram-positive organisms. Among all isolated pathogens, the highest resistance was observed for amoxicillin-clavulanic acid. Klebsiella pneumoniae had the highest resistance to amoxicillin-clavulanic acid and ampicillin. Most of the organisms were sensitive to tobramycin except Acinetobacter baumannii (n=3, 50%), Escherichia coli (n=4, 57%), and K. pneumoniae (n=6, 46%).
    CONCLUSION: Overall, a high resistance was observed for beta-lactam antibiotics. In addition, a high resistance was noted for ceftazidime with A. baumannii species (n=16, 77%). However, for quinolones, the highest resistance to ciprofloxacin was observed for E. coli, A. baumannii, methicillin-resistant Staphylococcus aureus, and K. pneumoniae.
    KEYWORDS: Antimicrobial resistance; Community-acquired organisms; Makkah; Pilgrims
  2. Alharbi KS, Fuloria NK, Fuloria S, Rahman SB, Al-Malki WH, Javed Shaikh MA, et al.
    Chem Biol Interact, 2021 Aug 25;345:109568.
    PMID: 34181887 DOI: 10.1016/j.cbi.2021.109568
    Nuclear factor-kappa B, involved in inflammation, host immune response, cell adhesion, growth signals, cell proliferation, cell differentiation, and apoptosis defense, is a dimeric transcription factor. Inflammation is a key component of many common respiratory disorders, including asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis, and acute respiratory distress syndrome. Many basic transcription factors are found in NF-κB signaling, which is a member of the Rel protein family. Five members of this family c-REL, NF-κB2 (p100/p52), RelA (p65), NF-κB1 (p105/p50), RelB, and RelA (p65) produce 5 transcriptionally active molecules. Proinflammatory cytokines, T lymphocyte, and B lymphocyte cell mitogens, lipopolysaccharides, bacteria, viral proteins, viruses, double-stranded RNA, oxidative stress, physical exertion, various chemotherapeutics are the stimulus responsible for NF-κB activation. NF-κB act as a principal component for several common respiratory illnesses, such as asthma, lung cancer, pulmonary fibrosis, COPD as well as infectious diseases like pneumonia, tuberculosis, COVID-19. Inflammatory lung disease, especially COVID-19, can make NF-κB a key target for drug production.
  3. Subramaniyan V, Fuloria S, Gupta G, Kumar DH, Sekar M, Sathasivam KV, et al.
    Chem Biol Interact, 2022 Jan 05;351:109735.
    PMID: 34742684 DOI: 10.1016/j.cbi.2021.109735
    Epithelial growth factor receptor (EGFR) is a cell surface transmembrane receptor that mediates the tyrosine signaling pathway to carry the extracellular messages inside the cell and thereby alter the function of nucleus. This leads to the generation of various protein products to up or downregulate the cellular function. It is encoded by cell erythroblastosis virus oncogene B1, so called C-erb B1/ERBB2/HER-2 gene that acts as a proto-oncogene. It belongs to the HER-2 receptor-family in breast cancer and responds best with anti-Herceptin therapy (anti-tyrosine kinase monoclonal antibody). HER-2 positive breast cancer patient exhibits worse prognosis without Herceptin therapy. Similar incidence and prognosis are reported in other epithelial neoplasms like EGFR + lung non-small cell carcinoma and glioblastoma (grade IV brain glial tumor). Present study highlights the role and connectivity of EGF with various cancers via signaling pathways, cell surface receptors mechanism, macromolecules, mitochondrial genes and neoplasm. Present study describes the EGFR associated gene expression profiling (in breast cancer and NSCLC), relation between mitrochondrial genes and carcinoma, and several in vitro and in vivo models to screen the synergistic effect of various combination treatments. According to this study, although clinical studies including targeted treatments, immunotherapies, radiotherapy, TKi-EGFR combined targeted therapy have been carried out to investigate the synergism of combination therapy; however still there is a gap to apply the scenarios of experimental and clinical studies for further developments. This review will give an idea about the transition from experimental to most advanced clinical studies with different combination drug strategies to treat cancer.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links