Displaying all 4 publications

Abstract:
Sort:
  1. Mohamed Ibrahim J. Ibrahim, Mohd Zuhri Mohamed Yusoff
    MyJurnal
    This study presents an investigation about the effect of size variation on mechanical
    performance of square core interlocking structures, by using finite element analysis
    (FEA). The material used in this study is flax fibre reinforced polypropylene (PP)
    composite. Abaqus software was used for modelling and visualizing number of six
    interlocking honeycomb structures with different cell sizes and heights. In the first
    analysis, Abaqus/standard was performed on the perfect models by applying quasistatic
    loading to identify the imperfection shape and obtaining the buckling Eigenmodes
    for the models, then the Eigen-modes from abaqus/standard were imported
    to abaqus/explicit to run post-buckling analysis and simulate the overall imperfection
    behaviour of models. The numerical results from the finite element analysis
    simulation were used to plot load-displacement curve to each model. The area under
    the load-displacement curve represents the total absorbed energy, energy absorption
    per unit mass indicates the specific energy absorption, and the highest value of
    specific energy absorption represents the optimum size. The findings demonstrated
    that the square interlocking structure exhibits good energy absorption performance
    in some geometrical cases, and also revealed that the natural fibre composites have
    unique energy absorption capability under quasi-static loads.
  2. Mohd Zuhri Mohamed Yusoff, Mohd Sapuan Salit, Napsiah Ismail
    The use of natural fibres obtained from plants and trees as reinforcing materials has attracted many researchers to widen their applications. Natural fibres are low cost, low density, have high specific properties, biodegradable and non-abrasive. Oil palm fibre (OPF) can be obtained directly from natural resource, it is cheap and also has advantages due to its renewable nature, low cost, and easy availability. In this study, the mechanical performances of single oil palm fibre are measured and evaluated. The diameter of OPF was in the range from 250 to 610 μm while moisture content was between 2.2 to 9.5%. The average tensile properties obtained were tensile strength, 71 MPa, Young’s modulus, 1703 MPa and elongation at break, 11%.
  3. Mohd Zuhri Mohamed Yusoff, Mohd Sapuan Salit, Napsiah Ismail, Riza Wirawan
    Sains Malaysiana, 2010;39:333-336.
    This paper presents the study of mechanical properties of short random oil palm fibre reinforced epoxy (OPF/epoxy) composites. Empty fruit bunch (EFB) was selected as the fibre and epoxy as the matrix. Composite plate with four different volume fractions of oil palm fibre was fabricated, (5 vol%, 10 vol%, 15 vol% and 20 vol%). The fabrication was made by hand-lay up techniques. The tensile and flexural properties showed a decreasing trend as the fibre loading was increased. The highest tensile properties was obtained for the composite with fibre loading of 5 vol% and there were no significant effect for addition of more than 5 vol% to the flexural properties. Interaction between fibre and matrix was observed from the scanning electron microscope (SEM) micrograph.
  4. Latif AA, Ishak MR, Razman MR, Yidris N, Mohd Zuhri MY, Rizal MAM, et al.
    Sci Rep, 2025 Jan 09;15(1):1432.
    PMID: 39789006 DOI: 10.1038/s41598-024-83634-7
    The adoption of pultruded glass fibre-reinforced polymer (pGFRP) composites as a substitute for traditional wooden cross-arms in high transmission towers represents a relatively novel approach. These materials were selected for their high strength-to-weight ratio and lightweight properties. Despite various studies focusing on structures improvement, there still have a significant gap in understanding the deformation characteristics of full-scale cross-arms under actual operational loads. Existing study often concentrate on small coupon scale and laboratory condition, leaving a gap in understanding how the cross-arm behavior in full-scale acting on actual weather condition. This study aims to investigate the load-deflection and long-term creep behavior of a pGFRP cross-arm installed in a 132 kV transmission tower. The pGFRP cross-arm was load-tested on a customized rig in an open environment. Using the cantilever beam concept, deflection was analyzed and compared to wood cross-arms. Finite element analysis validated results, and long-term deformation under high-stress loads was assessed. The pGFRP cross-arms showed lower deflection at working loads compared to Balau wood, due to the latter's higher elastic modulus and flexibility specifically at Point Y3, the critical issues necessitated reinforcement strategies. pGFRP cross-arms withstood higher bending stress, showing 32% less deflection under normal conditions and 15% less under broken wire conditions than Balau wood. Additionally, the creep strength of wood was 34% lower than that of pGFRP cross-arms. Besides that, the pGFRP cross-arm have highest elastic modulus than Balau-wood, shows that the composite cross-arm have better structural strength, resisting deformation and higher flexibility materials. Finite element analysis (FEA) confirmed these results with the relative error between them less than 1%. Consequently, the investigation into pGFRP cross-arm deformation behavior in this paper serves as a foundational framework for future research endeavors specifically for high transmission tower and other structural application.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links