Displaying all 4 publications

Abstract:
Sort:
  1. Desire IA, Luqman M, Puspitasari Y, Tyasningsih W, Wardhana DK, Meles DK, et al.
    Vet World, 2024 Mar;17(3):577-584.
    PMID: 38680137 DOI: 10.14202/vetworld.2024.577-584
    BACKGROUND AND AIM: Bovine tuberculosis (TB) is a zoonotic disease of great public health importance, particularly in Indonesia, where control measures are limited or are not implemented. This study aimed to detect the presence of Mycobacterium pathogens in milk samples from dairy cattle in Pasuruan regency and Surabaya City, East Java, using Ziehl-Neelsen acid-fast staining and polymerase chain reaction (PCR).

    MATERIALS AND METHODS: Milk samples were aseptically collected from 50 cattle in the Lekok Subdistrict, Pasuruan Regency, and 44 from dairy farms in the Lakarsantri Subdistrict, Wonocolo Subdistrict, Mulyorejo Subdistrict, and Kenjeran Subdistrict, Surabaya, East Java. To detect Mycobacteria at the species level, each sample was assessed by Ziehl-Neelsen staining and PCR using the RD1 and RD4 genes.

    RESULTS: The results of PCR assay from 50 samples in Lekok Subdistrict, Pasuruan Regency showed that 30 samples (60%) were positive for Mycobacterium tuberculosis and two samples (4%) were positive for Mycobacterium bovis, although Ziehl-Neelsen staining did not show the presence of Mycobacterium spp. In the Surabaya region, 31 samples (70.45%) were positive for M. tuberculosis and three samples (6.8%) were positive for M. bovis. Six samples (13.63%) from all PCR-positive samples could be detected microscopically with Ziehl-Neelsen.

    CONCLUSION: The presence of bovine TB in this study supports the importance of using a molecular tool alongside routine surveillance for a better understanding of the epidemiology of bovine TB in East Java.

  2. Puspitasari Y, Salleh A, Zamri-Saad M
    BMC Vet Res, 2020 Jun 09;16(1):186.
    PMID: 32517749 DOI: 10.1186/s12917-020-02415-2
    BACKGROUND: Pasteurella multocida B:2 causes haemorrhagic septicaemia in cattle and buffaloes. However, buffaloes are found to be more susceptible to the infection than cattle. Upon infection, the pathogen rapidly spread from the respiratory tract to the blood circulation within 16-72 h, causing septicaemia. So far, limited study has been conducted to evaluate the response of endothelial cells of buffalo towards P. multocida B:2 and its lipopolysaccharide (LPS). This study aimed to evaluate the ultrastructural changes in the aortic endothelium of buffaloes (BAEC) following exposure to P. multocida B:2 and its endotoxin. The endothelial cells were harvested from the aorta of healthy buffaloes and were prepared as monolayer cell cultures. The cultures were divided into 3 groups before Group 1 was inoculated with 107 cfu/ml of whole cell P. multocida B:2, Group 2 with LPS, which was extracted earlier from 107 cfu/ml of P. multocida B:2 and Group 3 with sterile cell culture medium. The cells were harvested at 0, 6, 12, 18, 24, 36, and 48 h post-inoculation for assessment of cellular changes using transmission electron microscopy.

    RESULTS: The BAEC of Groups 1 and 2 demonstrated moderate to severe endothelial lysis, suggestive of acute cellular injury. In general, severity of the ultrastructural changes increased with the time of incubation but no significant difference (p > 0.05) in the severity of the cellular changes between Groups 1 and 2 was observed in the first 18 h. The severity of lesions became significant (p 

  3. Puspitasari Y, Annas S, Adza-Rina MN, Zamri-Saad M
    Microb Pathog, 2019 Jun;131:170-174.
    PMID: 30978429 DOI: 10.1016/j.micpath.2019.04.012
    Pasteurella multocida B:2 is a Gram-negative organism causing haemorrhagic septicaemia (HS) in buffaloes. It causes severe pulmonary infection, leading to infiltration of numerous macrophages and neutrophils. Despite the inflammatory response, buffaloes succumb to HS. This study aims to evaluate the in-vitro efficacy of macrophages and neutrophils of buffalo following exposure to P. multocida B:2. In-vitro infections were done using 107 cfu/ml of P. multocida B:2 for Group 1, Escherichia coli for Group 2 and Mannhaemia haemolytica A:2 for Group 3 cells. The inoculated cell cultures were harvested at 0, 30, 60 and 120 min post-exposure and the phagocytic, killing and cell death rates were determined. Both phagocytosis and killing rates of all bacteria increased over time. Phagocytosis involved between 71% and 73% neutrophils and between 60% and 64% macrophages at 120 min. Killing rate of all bacteria involved between 76% and 79% for neutrophils and between 70% and 74% for macrophages at 120 min. Death rate of neutrophils ranged between 67% in Group 3, and 88% in Group 1 at 120 min, significantly (p  0.05) than Group 2. Similar pattern was observed for death rate of macrophages. The phagocytosis and killing rates of P. multocida B:2 were similar to other bacterial species used in this study but more neutrophils and macrophages were dead following infection by P. multocida B:2 than M. haemolytica A:2.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links