Segmentation of objects from a noisy and complex image is still a challenging task that needs to be addressed. This article proposed a new method to detect and segment nuclei to determine whether they are malignant or not (determination of the region of interest, noise removal, enhance the image, candidate detection is employed on the centroid transform to evaluate the centroid of each object, the level set [LS] is applied to segment the nuclei). The proposed method consists of three main stages: preprocessing, seed detection, and segmentation. Preprocessing stage involves the preparation of the image conditions to ensure that they meet the segmentation requirements. Seed detection detects the seed point to be used in the segmentation stage, which refers to the process of segmenting the nuclei using the LS method. In this research work, 58 H&E breast cancer images from the UCSB Bio-Segmentation Benchmark dataset are evaluated. The proposed method reveals the high performance and accuracy in comparison to the techniques reported in literature. The experimental results are also harmonized with the ground truth images.
With an increase in the advancement of digital imaging and computing power, computationally intelligent technologies are in high demand to be used in ophthalmology cure and treatment. In current research, Retina Image Analysis (RIA) is developed for optometrist at Eye Care Center in Management and Science University. This research aims to analyze the retina through vessel detection. The RIA assists in the analysis of the retinal images and specialists are served with various options like saving, processing and analyzing retinal images through its advanced interface layout. Additionally, RIA assists in the selection process of vessel segment; processing these vessels by calculating its diameter, standard deviation, length, and displaying detected vessel on the retina. The Agile Unified Process is adopted as the methodology in developing this research. To conclude, Retina Image Analysis might help the optometrist to get better understanding in analyzing the patient's retina. Finally, the Retina Image Analysis procedure is developed using MATLAB (R2011b). Promising results are attained that are comparable in the state of art.
This paper presents a novel features mining approach from documents that could not be mined via optical character recognition (OCR). By identifying the intimate relationship between the text and graphical components, the proposed technique pulls out the Start, End, and Exact values for each bar. Furthermore, the word 2-gram and Euclidean distance methods are used to accurately detect and determine plagiarism in bar charts.
The Leukocytes are differentiated from each other on the basis of their nuclei, demanded in many Medical studies, especially in all types of Leukemia by the Hematologists to note the disorder caused by specific type of Leukocyte. Leukemia is a life threatening disease. The work for diagnosing is manually carried out by the Hematologists involving much labor, time and human errors. The problems mentioned are easily addressed through computer vision techniques, but still accuracy and efficiency are demanded in terms of the basic and challenging step segmentation of Leukocyte's nuclei. The underlying study proposed better method in terms of accuracy and efficiency by designing a dynamic convolution filter for boosting low intensity values in the separated green channel of an RGB image and suppressing the high values in the same channel. The high values in the green channel become 255 (background) while the nuclei always have low values in the green channel and thus clearly appear as foreground. The proposed technique is tested on 365 images achieving an overall accuracy of 95.89%, while improving the efficiency by 10%. The proposed technique achieved its targets in a realistic way by improving the accuracy as well as the efficiency and both are highly required in the area.
Plant diseases are accountable for economic losses in an agricultural country. The manual process of plant diseases diagnosis is a key challenge from last one decade; therefore, researchers in this area introduced automated systems. In this research work, automated system is proposed for citrus fruit diseases recognition using computer vision technique. The proposed method incorporates five fundamental steps such as preprocessing, disease segmentation, feature extraction and reduction, fusion, and classification. The noise is being removed followed by a contrast stretching procedure in the very first phase. Later, watershed method is applied to excerpt the infectious regions. The shape, texture, and color features are subsequently computed from these infection regions. In the fourth step, reduced features are fused using serial-based approach followed by a final step of classification using multiclass support vector machine. For dimensionality reduction, principal component analysis is utilized, which is a statistical procedure that enforces an orthogonal transformation on a set of observations. Three different image data sets (Citrus Image Gallery, Plant Village, and self-collected) are combined in this research to achieving a classification accuracy of 95.5%. From the stats, it is quite clear that our proposed method outperforms several existing methods with greater precision and accuracy.