Experiments under controlled conditions have established that ecosystem functioning is generally positively related to levels of biodiversity, but it is unclear how widespread these effects are in real-world settings and whether they can be harnessed for ecosystem restoration. We used remote-sensing data from the first decade of a long-term, field-scale tropical restoration experiment initiated in 2002 to test how the diversity of planted trees affected recovery of a 500-ha area of selectively logged forest measured using multiple sources of satellite data. Replanting using species-rich mixtures of tree seedlings with higher phylogenetic and functional diversity accelerated restoration of remotely sensed estimates of aboveground biomass, canopy cover, and leaf area index. Our results are consistent with a positive relationship between biodiversity and ecosystem functioning in the lowland dipterocarp rainforests of SE Asia and demonstrate that using diverse mixtures of species can enhance their initial recovery after logging.
One of the main environmental threats in the tropics is selective logging, which has degraded large areas of forest. In southeast Asia, enrichment planting with seedlings of the dominant group of dipterocarp tree species aims to accelerate restoration of forest structure and functioning. The role of tree diversity in forest restoration is still unclear, but the 'insurance hypothesis' predicts that in temporally and spatially varying environments planting mixtures may stabilize functioning owing to differences in species traits and ecologies. To test for potential insurance effects, we analyse the patterns of seedling mortality and growth in monoculture and mixture plots over the first decade of the Sabah biodiversity experiment. Our results reveal the species differences required for potential insurance effects including a trade-off in which species with denser wood have lower growth rates but higher survival. This trade-off was consistent over time during the first decade, but growth and mortality varied spatially across our 500 ha experiment with species responding to changing conditions in different ways. Overall, average survival rates were extreme in monocultures than mixtures consistent with a potential insurance effect in which monocultures of poorly surviving species risk recruitment failure, whereas monocultures of species with high survival have rates of self-thinning that are potentially wasteful when seedling stocks are limited. Longer-term monitoring as species interactions strengthen will be needed to more comprehensively test to what degree mixtures of species spread risk and use limited seedling stocks more efficiently to increase diversity and restore ecosystem structure and functioning.
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.