Displaying all 3 publications

Abstract:
Sort:
  1. Khor YP, Sim BI, Abas F, Lai OM, Wang Y, Nehdi IA, et al.
    J Sci Food Agric, 2019 Dec;99(15):6989-6997.
    PMID: 31414493 DOI: 10.1002/jsfa.9989
    BACKGROUND: Recycled oil has emerged as a significant food safety issue and poses a major threat to public health. To date, very limited studies have been conducted aiming to detect the adulteration of used and recycled palm olein in refined, bleached and deodorized palm olein (RBDPO). In the present study, oil samples that underwent controlled heating and deep-frying studies were refined using the common oil refining procedure to simulate the production of recycled oil. Polymerized triacylglycerol (PTG), oxidized monomeric triacylglycerols (oxTAGs), such as epoxy, keto and hydroxy acids, and caprylic acid have been proposed as potential indicators for tracking the adulteration of recycled oil.

    RESULTS: For PTG, triacylglycerol oligomers and dimers showed a significant increase (P 

  2. Sim BI, Khor YP, Lai OM, Yeoh CB, Wang Y, Liu Y, et al.
    Food Chem, 2020 Oct 30;328:127147.
    PMID: 32497897 DOI: 10.1016/j.foodchem.2020.127147
    The reduction of the 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) was successfully achieved by the optimization of four processing parameters: phosphoric acid dosage, degumming temperature, bleaching earth dosage, and deodorization temperature by response surface methodology without the need for additional processing steps. The optimized processing conditions were 0.31% phosphoric acid dosage, 50 °C degumming temperature, 3% bleaching earth dosage, and 240 °C deodorization temperature. The optimization resulted in more than 80% and 65% reduction of 3-MCPDE and GE levels, respectively with color and FFA contents maintained in the acceptable range specified by Palm Oil Refiners Association of Malaysia. The optimized refining condition was transferred to macro scale refining units of 1 kg and 3 kg capacities to investigate its successful application during scale-up process.
  3. Sim BI, Muhamad H, Lai OM, Abas F, Yeoh CB, Nehdi IA, et al.
    J Oleo Sci, 2018 Apr 01;67(4):397-406.
    PMID: 29526878 DOI: 10.5650/jos.ess17210
    This paper examines the interactions of degumming and bleaching processes as well as their influences on the formation of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters in refined, bleached and deodorized palm oil by using D-optimal design. Water degumming effectively reduced the 3-MCPDE content up to 50%. Acid activated bleaching earth had a greater effect on 3-MCPDE reduction compared to natural bleaching earth and acid activated bleaching earth with neutral pH, indicating that performance and adsorption capacities of bleaching earth are the predominant factors in the removal of esters, rather than its acidity profile. The combination of high dosage phosphoric acid during degumming with the use of acid activated bleaching earth eliminated almost all glycidyl esters during refining. Besides, the effects of crude palm oil quality was assessed and it was found that the quality of crude palm oil determines the level of formation of 3-MCPDE and glycidyl esters in palm oil during the high temperature deodorization step of physical refining process. Poor quality crude palm oil has strong impact towards 3-MCPDE and glycidyl esters formation due to the intrinsic components present within. The findings are useful to palm oil refining industry in choosing raw materials as an input during the refining process.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links