Displaying all 5 publications

Abstract:
Sort:
  1. Tamilvanan S, Karmegam S
    Pharm Dev Technol, 2012 Jul-Aug;17(4):494-501.
    PMID: 21609308 DOI: 10.3109/10837450.2010.550622
    Methyl salicylate-lactose physical mixture (1:1 and 1:1.5 ratios) was incorporated into calcium alginate beads by a coacervation method involving an ionotropic gelation/polyelectrolyte complexation approach.
  2. Tamilvanan S, Baskar R
    Pharm Dev Technol, 2013 Jul-Aug;18(4):761-71.
    PMID: 23668371 DOI: 10.3109/10837450.2011.586038
    Celecoxib (CXB, 0.2 g)-loaded anionic and cationic nanosized emulsions were prepared by a well-established combined emulsification method.
  3. Tamilvanan S, Kumar BA
    Drug Dev Ind Pharm, 2011 Sep;37(9):1003-15.
    PMID: 21417616 DOI: 10.3109/03639045.2011.555407
    Acetazolamide (ACZM)-loaded anionic, cationic, and neutral-charged oil-in-water nanosized emulsions were prepared and compared with their mean droplet diameter, surface charge, entrapment efficiency, freeze-thaw cycling stability, in vitro drug release, and transcorneal permeation.
  4. Tamilvanan S, Venkatesh Babu R, Nappinai A, Sivaramakrishnan G
    Drug Dev Ind Pharm, 2011 Apr;37(4):436-45.
    PMID: 20923389 DOI: 10.3109/03639045.2010.521161
    Hydrophilic and hydrophobic polymer-based nicorandil (10 mg)-loaded peroral tablets were prepared using the wet granulation technique. The influence of varying amounts of hydroxypropyl methylcellulose (HPMC) (30-50 mg), ethylcellulose (2-4 mg), microcrystalline cellulose (5-20 mg) and Aerosil® (5-12 mg) in conjunction with the constant amounts (3 mg) of glidant and lubricant (magnesium stearate and talc) on the in vitro performances of the tablets (hardness, friability, weight variation, thickness uniformity, drug content, and drug release behavior) were investigated.
  5. Tamilvanan S, Kumar BA, Senthilkumar SR, Baskar R, Sekharan TR
    AAPS PharmSciTech, 2010 Jun;11(2):904-9.
    PMID: 20496017 DOI: 10.1208/s12249-010-9455-3
    The objectives of the present work were to prepare castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer-chitosan emulgator film and to assess the kinetic stability of the prepared cationic emulsion after subjecting it to thermal processing and freeze-thaw cycling. Presence of cryoprotectants (5%, w/w, sucrose +5%, w/w, sorbitol) improved the stability of emulsions to droplet aggregation during freeze-thaw cycling. After storing the emulsion at 4 degrees C, 25 degrees C, and 37 degrees C over a period of up to 6 months, no significant change was noted in mean diameter of the dispersed oil droplets. However, the emulsion stored at the highest temperature did show a progressive decrease in the pH and zeta potential values, whereas the emulsion kept at the lowest temperatures did not. This indicates that at 37 degrees C, free fatty acids were formed from the castor oil, and consequently, the liberated free fatty acids were responsible for the reduction in the emulsion pH and zeta potential values. Thus, the injectable castor oil-based nano-sized emulsion could be useful for incorporating various active pharmaceutical ingredients that are in size from small molecular drugs to large macromolecules such as oligonucleotides.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links