Displaying all 10 publications

Abstract:
Sort:
  1. Tong X, Wang Z, Mirab-Balou M
    Zootaxa, 2016 Jan 05;4061(2):181-8.
    PMID: 27395492 DOI: 10.11646/zootaxa.4061.2.8
    Two new species of the genus Asprothrips Crawford, A. bucerus sp. n. and A. punctulosus sp. n. are described and illustrated from China. A. bimaculatus Michel & Ryckewaert, previously known only from Martinique in the French West Indies and Malaysia, is newly recorded from mainland China and Taiwan, along with the first descriptive notes of the male, and the record from China of A. fuscipennis Kudô is considered a misidentification of A. bucerus sp. n. The generic diagnosis of Asprothrips is briefly summarized and an updated key to world species of the genus is also presented.
  2. Chen Y, Tang WY, Tong X, Ji H
    Cancer Commun (Lond), 2019 10 01;39(1):53.
    PMID: 31570104 DOI: 10.1186/s40880-019-0402-8
    Despite the tremendous efforts for improving therapeutics of lung cancer patients, its prognosis remains disappointing. This can be largely attributed to the lack of comprehensive understanding of drug resistance leading to insufficient development of effective therapeutics in clinic. Based on the current progresses of lung cancer research, we classify drug resistance mechanisms into three different levels: molecular, cellular and pathological level. All these three levels have significantly contributed to the acquisition and evolution of drug resistance in clinic. Our understanding on drug resistance mechanisms has begun to change the way of clinical practice and improve patient prognosis. In this review, we focus on discussing the pathological changes linking to drug resistance as this has been largely overlooked in the past decades.
  3. Cai M, Li X, Zhao H, Liu C, You Y, Lin F, et al.
    PMID: 34637273 DOI: 10.1021/acsami.1c15973
    Broadening light absorption and improving charge carrier separation are very critical to boost the water splitting efficiency in photoelectrochemical (PEC) systems. We herein reported a heterostructured photoanode consisting of BiVO4 and eco-friendly, near-infrared (NIR) CuInSeS@ZnS core-shell quantum dots (QDs) for PEC water oxidation. The decoration of core-shell QDs concurrently extends the absorption range of BiVO4 from the ultraviolet-visible to NIR region and promotes the effective separation and transfer of photo-excited electrons and holes. Without any sacrificial agents and co-catalysts, the as-fabricated NIR core-shell QDs/BiVO4 heterostructured photoanodes exhibit an approximately fourfold higher photocurrent density than that of the bare BiVO4, up to 3.17 mA cm-2 at 1.23 V versus the reversible hydrogen electrode. It is revealed that both a suitable band alignment and an intimate interfacial junction between QDs and BiVO4 are the main factors that result in enhanced charge separation and transfer efficiencies. We also highlight that the NIR CISeS QDs passivated with a ZnS shell can suppress the non-radiative recombination and enhance the stability of the QD photoanodes for optimized PEC performance. This work provides a facile and effective approach to boost the water oxidation efficiency of semiconductor photoanodes via utilizing NIR core-shell QDs as a light sensitizer and charge carrier separator.
  4. Zhou C, Yan L, Xu J, Hamezah HS, Wang T, Du F, et al.
    J Mol Model, 2024 Feb 13;30(3):68.
    PMID: 38347278 DOI: 10.1007/s00894-024-05875-7
    CONTEXT: Adipose triglyceride lipase (ATGL), a key enzyme responsible for lipolysis, catalyzes the first step of lipolysis and converts triglycerides to diacylglycerols and free fatty acids (FFA). Our previous work suggested that phillyrin treatment improves insulin resistance in HFD-fed mice, which was associated with ATGL inhibition. In this study, using docking simulation, we explored the binding pose of phillyrin and atglistatin (a mouse ATGL inhibitor) to ATGL in mouse. From the docking results, the interactions with Ser47 and Asp166 were speculated to have caused phillyrin to inhibit ATGL in mice. Further, molecular dynamics simulation of 100 ns and MM-GBSA were conducted for the protein-ligand complex, which indicated that the system was stable and that phillyrin displayed a better affinity to ATGL than did atglistatin throughout the simulation period. Moreover, the results of pharmacological validation were consistent with those of the in silico simulations. In summary, our study illustrates the potential of molecular docking to accurately predict the binding protein produced by AlphaFold and suggests that phillyrin is a potential small molecule that targets and inhibits ATGL enzymatic activity.

    METHODS: The ATGL-predicted protein structure, verified by PROCHECK, was determined using AlphaFold. Molecular docking, molecular dynamics simulation, and prime molecular mechanic-generalized born surface area were performed using LigPrep, Desmond, and prime MM-GBSA modules of Schrödinger software release 2021-2, respectively. For pharmacological validation, immunoblotting was performed to assess ATGL protein expression. The fluorescence intensity and glycerol concentration were quantified to evaluate the efficiency of phillyrin in inhibiting ATGL.

  5. Zhou C, Xia Q, Hamezah HS, Fan Z, Tong X, Han R
    Front Pharmacol, 2024;15:1288584.
    PMID: 38500762 DOI: 10.3389/fphar.2024.1288584
    Objective: To evaluate the efficacy of the fruits of the medicinal plant Forsythia suspensa (Thunb.) Vahl (FS), in treating inflammation-associated diseases through a meta-analysis of animal models, and also probe deeply into the signaling pathways underlying the progression of inflammation. Materials and methods: All data analyses were performed using Review Manager 5.3 and the results are presented as flow diagrams, risk-of-bias summaries, forest plots, and funnel plots. Summary estimates were calculated using a random- or fixed-effect model, depending on the value of I2. Results: Of the 710 records identified in the initial search, 11 were selected for the final meta-analysis. Each study extracted data from the model and treatment groups for analysis, and the results showed that FS alleviated the inflammatory cytokine levels in serum; oxidant indicator: reactive oxygen species; enzymes of liver function; endotoxin and regulatory cells in blood; and improved the antioxidant enzyme superoxide dismutase. Conclusion: FS effectively reversed the change in acute or chronic inflammation indicators in animal models, and the regulation of multiple channel proteins in inflammatory signaling pathways suggests that FS is a good potential drug for inflammatory disease drug therapy.
  6. Xu JY, Tong X, Besteiro LV, Li X, Hu C, Liu R, et al.
    Nanoscale, 2021 Sep 23;13(36):15301-15310.
    PMID: 34490860 DOI: 10.1039/d1nr04199a
    "Giant" core/shell quantum dots (g-QDs) are promising candidates for emerging optoelectronic technologies thanks to their facile structure/composition-tunable optoelectronic properties and outstanding photo-physical/chemical stability. Here, we synthesized a new type of CuInTeSe (CITS)/CdS g-QDs and regulated their optoelectronic properties by controlling the shell thickness. Through increasing the shell thickness, as-prepared g-QDs exhibited tunable red-shifted emission (from 900 to 1200 nm) and prolonged photoluminescence (PL) lifetimes (up to ∼14.0 μs), indicating a formed band structure showing efficient charge separation and transfer, which is further testified by theoretical calculations and ultrafast time-resolved transient absorption (TA) spectroscopy. These CITS/CdS g-QDs with various shell thicknesses can be employed to fabricate photoelectrochemical (PEC) cells, exhibiting improved photoresponse and stability as compared to the bare CITS QD-based devices. The results indicate that the rational design and engineering of g-QDs is very promising for future QD-based optoelectronic technologies.
  7. Azlan UK, Khairul Annuar NA, Mediani A, Aizat WM, Damanhuri HA, Tong X, et al.
    Front Pharmacol, 2022;13:1035220.
    PMID: 36686668 DOI: 10.3389/fphar.2022.1035220
    Neurodegenerative diseases (NDs) are sporadic maladies that affect patients' lives with progressive neurological disabilities and reduced quality of life. Neuroinflammation and oxidative reaction are among the pivotal factors for neurodegenerative conditions, contributing to the progression of NDs, such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS) and Huntington's disease (HD). Management of NDs is still less than optimum due to its wide range of causative factors and influences, such as lifestyle, genetic variants, and environmental aspects. The neuroprotective and anti-neuroinflammatory activities of Moringa oleifera have been documented in numerous studies due to its richness of phytochemicals with antioxidant and anti-inflammatory properties. This review highlights up-to-date research findings on the anti-neuroinflammatory and neuroprotective effects of M. oleifera, including mechanisms against NDs. The information was gathered from databases, which include Scopus, Science Direct, Ovid-MEDLINE, Springer, and Elsevier. Neuroprotective effects of M. oleifera were mainly assessed by using the crude extracts in vitro and in vivo experiments. Isolated compounds from M. oleifera such as moringin, astragalin, and isoquercitrin, and identified compounds of M. oleifera such as phenolic acids and flavonoids (chlorogenic acid, gallic acid, ferulic acid, caffeic acid, kaempferol, quercetin, myricetin, (-)-epicatechin, and isoquercitrin) have been reported to have neuropharmacological activities. Therefore, these compounds may potentially contribute to the neuroprotective and anti-neuroinflammatory effects. More in-depth studies using in vivo animal models of neurological-related disorders and extensive preclinical investigations, such as pharmacokinetics, toxicity, and bioavailability studies are necessary before clinical trials can be carried out to develop M. oleifera constituents into neuroprotective agents.
  8. Annuar NAK, Azlan UK, Mediani A, Tong X, Han R, Al-Olayan E, et al.
    Biomed Pharmacother, 2024 Feb;171:116134.
    PMID: 38219389 DOI: 10.1016/j.biopha.2024.116134
    Mitragynine is one of the main psychoactive alkaloids in Mitragyna speciosa Korth. (kratom). It has opium-like effects by acting on μ-, δ-, and κ-opioid receptors in the brain. The compound also interacts with other receptors, such as adrenergic and serotonergic receptors and neuronal Ca2+ channels in the central nervous system to have its neuropharmacological effects. Mitragynine has the potential to treat diseases related to neurodegeneration such as Alzheimer's disease and Parkinson's disease, as its modulation on the opioid receptors has been reported extensively. This review aimed to provide an up-to-date and critical overview on the neuropharmacological effects, mechanisms of action, pharmacokinetics and safety of mitragynine as a prospective psychotropic agent. Its multiple neuropharmacological effects on the brain include antinociceptive, anti-inflammatory, antidepressant, sedative, stimulant, cognitive, and anxiolytic activities. The potential of mitragynine to manage opioid withdrawal symptoms related to opioid dependence, its pharmacokinetics and toxic effects were also discussed. The interaction of mitragynine with various receptors in the brain produce diverse neuropharmacological effects, which have beneficial properties in neurological disorders. However, further studies need to be carried out on mitragynine to uncover its complex mechanisms of action, pharmacokinetics, pharmacodynamic profiles, addictive potential, and safe dosage to prevent harmful side effects.
  9. Lin R, Hu E, Liu M, Wang Y, Cheng H, Wu J, et al.
    Nat Commun, 2019 04 09;10(1):1650.
    PMID: 30967531 DOI: 10.1038/s41467-019-09248-0
    Despite the importance of studying the instability of delithiated cathode materials, it remains difficult to underpin the degradation mechanism of lithium-rich cathode materials due to the complication of combined chemical and structural evolutions. Herein, we use state-of-the-art electron microscopy tools, in conjunction with synchrotron X-ray techniques and first-principle calculations to study a 4d-element-containing compound, Li2Ru0.5Mn0.5O3. We find surprisingly, after cycling, ruthenium segregates out as metallic nanoclusters on the reconstructed surface. Our calculations show that the unexpected ruthenium metal segregation is due to its thermodynamic insolubility in the oxygen deprived surface. This insolubility can disrupt the reconstructed surface, which explains the formation of a porous structure in this material. This work reveals the importance of studying the thermodynamic stability of the reconstructed film on the cathode materials and offers a theoretical guidance for choosing manganese substituting elements in lithium-rich as well as stoichiometric layer-layer compounds for stabilizing the cathode surface.
  10. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links