In this study, pectin-coated nanoliposomes containing Gijavash extract were used to formulate cheese and evaluate its shelf life, physicochemical, and sensory aspects. The study used a central composite design with three independent variables to prepare the cheese. The results showed that the optimal particle size, zeta potential, encapsulation efficiency, and DPPH radical antioxidant activity were 201.22 nm, -29.33 mV, 61.87%, and 57.54%, respectively. Adding nanoliposomes with varying extract amounts improved pH and lowered acidity in fortified cheeses. Moisture and lipolysis indices also improved after applying nanoliposomes. Sensory evaluation revealed that sensory acceptance was highest in the cheese with 15% extract. The study suggests that adding pectin-coated nanoliposomes containing Gijavash extract to cheese formulations may create novel products and improve their physicochemical properties.
Today, the increasing use of chemical preservatives in foods is considered one of the main problems in food industries. This study aimed to produce the pasteurised Doogh (Iranian yogurt drink) containing a nanoemulsion of essential oil (EO) with appropriate quality. A factorial test based on a completely randomised design with two treatments in three levels, including EO type (pennyroyal, Gijavash, and their equal combination) and a control sample was applied to assess the physicochemical and sensory properties of Doogh. The highest negative zeta potential and antioxidant activity percentage were observed in the sample containing the nanoemulsion of pennyroyal and enriched with a combination of two essential oils. The microbial evaluation results indicated that the total microorganism count was minimised in the Doogh containing the nanoemulsion of Gijavash. The nanoemulsions of pennyroyal and Gijavash can be added into Doogh formulation to produce a new product with maximum sensory acceptability.
Activated carbon (AC) is the most common and economically viable adsorbent for eliminating toxic organic pollutants, particularly dyes, from wastewater. Its widespread adoption is due to the simplicity and affordable production of AC, wherein low-cost agricultural wastes, such as durian skin can be used. Converting durian skin into AC presents a promising solution for its solid waste management. However, inherent drawbacks such as its non-selectivity, relatively short lifespan and laborious replacement and recovery processes diminish the overall efficacy of AC as an adsorbent. To address these challenges, the immobilisation of metal nanocatalysts such as silver nanoparticles (AgNPs) is one of the emerging solutions. AgNPs can facilitate the regeneration of the adsorption sites of AC by catalysing the conversion of the adsorbed dyes into harmless and simpler molecules. Nevertheless, the immobilisation of AgNPs on AC surface can be challenging as the pore size formation of AC is hard to control and the nanomaterials can easily leach out from the AC surface. Hence, in this study, we synthesised AC from durian skin (DS) and immobilised AgNPs on the AC-DS surface. Then, we used methylene blue (MB) removal for studying the adsorption capability and recyclability of the AC-DS. In the synthesis of AC-DS, the influences of reaction temperature, activating agent, and acid-washing to its capability in adsorptive removal of MB in solution were first determined. It was found that 400 °C, KOH activating agent, and the presence of acid-washing (50% of HNO3) resulted in AC-DS with the highest percentage of MB removal (91.49 ± 2.86%). Then, the overall results from three recyclability experiments demonstrate that AC-DS with immobilised AgNPs exhibited higher MB removal after several cycles (up to 6 cycles) as compared to AC-DS alone, proving the benefit of AgNPs for the recyclability of AC-DS. We also found that AgNPs/Citrate@AC-DS exhibited better adsorption capability and recyclability as compared to AgNPs/PVP@AC-DS indicating significant influences of type of stabilisers in this study. This study also demonstrates that the presence of more oxygen-containing functional groups (i.e., carboxyl and hydroxyl functional groups) after acid-washing on AC-DS and in citrate molecules, has greater influence to the performance of AC-DS and AgNPs/Citrate@AC-DS in the removal of MB as compared to the influences of their BET surface area and pore structure. The findings in this study have the potential to promote and serve as a guideline for harnessing the advantages of nanomaterials, such as AgNPs, to enhance the properties of AC for environmental applications.
Regression analysis was carried out to examine the association between certain socio-demographic characteristics and substance use among internally displaced persons (IDPs). Using an adapted version of the Drug Use Disorder Identification Test (DUDIT) instrument, cross-sectional survey data were obtained from 520 IDPs living in three camps located in Maiduguri, Borno state of Nigeria. The data were analyzed using Statistical Package for Social Sciences software version 21.0. Specifically, this article provides data about the participants' demographic characteristics, the types of substances they use, reasons for using such substances, and the prevalence of substance use. This dataset can offer valuable multivariate information for future research agendas in similar, or closely related study populations. This cross-sectional dataset is also valuable for policymakers who are seeking ways to intervene in the substance use problem, as well as other associated social vices, affecting the vulnerable population of IDPs.
In addition to polioviruses, non-polio enteroviruses (NPEVs) are frequently isolated from patients with acute flaccid paralysis (AFP) worldwide. In polio-free countries, there have been expectations that with disappearing wild poliovirus from the community, the rate of AFP would decrease, but the increasing number of AFP cases proved this notion to be wrong. There are speculations that NPEVs might be the cause of increasing AFP rate. The aim of this study was to investigate frequency, genetic diversity, circulation patterns of NPEVs isolated from AFP cases in Iran from 2015 to 2018. Fifty-three NPEVs were isolated from stool specimens of AFP cases during four years of AFP surveillance. Nested PCR and VP1 sequencing revealed 20 NPEV types in which Echovirus 3 (13.2%), Echovirus 6 (13.2%), Echovirus 7 (7.5%), Echovirus 13 (7.5%) and Echovirus 21 (7.5%) were the most frequent. Coxsackie B viruses were isolated for the first time in AFP cases in Iran. The phylogenetic analysis of Echovirus 3 and Echovirus 6 revealed that Iranian echovirus strains belonged to the same cluster, indicating these viruses have been circulating in Iran for a long time. Compared to global Echovirus 3 and Echovirus 6 references, Echovirus 3 and Echovirus 6 strains detected in this study were closely related to Indian and Malaysia strains, respectively. The results of this study demonstrated a wide variety of NPEV types in Iranian patients, some of which had not been reported in previous studies. Moreover, this study highlights the need for NPEV surveillance in AFP cases.