Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Boakye K, Bovbjerg M, Schuna J, Branscum A, Varma RP, Ismail R, et al.
    Sci Rep, 2023 Jan 06;13(1):290.
    PMID: 36609613 DOI: 10.1038/s41598-022-26406-5
    Urbanization may influence physical activity (PA) levels, although little evidence is available for low- and middle- income countries where urbanization is occurring fastest. We evaluated associations between urbanization and total PA, as well as work-, leisure-, home-, and transport-specific PA, for 138,206 adults living in 698 communities across 22 countries within the Prospective Urban and Rural Epidemiology (PURE) study. The 1-week long-form International PA Questionnaire was administered at baseline (2003-2015). We used satellite-derived population density and impervious surface area estimates to quantify baseline urbanization levels for study communities, as well as change measures for 5- and 10-years prior to PA surveys. We used generalized linear mixed effects models to examine associations between urbanization measures and PA levels, controlling for individual, household and community factors. Higher community baseline levels of population density (- 12.4% per IQR, 95% CI - 16.0, - 8.7) and impervious surface area (- 29.2% per IQR, 95% CI - 37.5, - 19.7), as well as the rate of change in 5-year population density (- 17.2% per IQR, 95% CI - 25.7, - 7.7), were associated with lower total PA levels. Important differences in the associations between urbanization and PA were observed between PA domains, country-income levels, urban/rural status, and sex. These findings provide new information on the complex associations between urbanization and PA.
  2. Joseph P, Yusuf S, Lee SF, Ibrahim Q, Teo K, Rangarajan S, et al.
    Heart, 2018 04;104(7):581-587.
    PMID: 29066611 DOI: 10.1136/heartjnl-2017-311609
    OBJECTIVE: To evaluate the performance of the non-laboratory INTERHEART risk score (NL-IHRS) to predict incident cardiovascular disease (CVD) across seven major geographic regions of the world. The secondary objective was to evaluate the performance of the fasting cholesterol-based IHRS (FC-IHRS).

    METHODS: Using measures of discrimination and calibration, we tested the performance of the NL-IHRS (n=100 475) and FC-IHRS (n=107 863) for predicting incident CVD in a community-based, prospective study across seven geographic regions: South Asia, China, Southeast Asia, Middle East, Europe/North America, South America and Africa. CVD was defined as the composite of cardiovascular death, myocardial infarction, stroke, heart failure or coronary revascularisation.

    RESULTS: Mean age of the study population was 50.53 (SD 9.79) years and mean follow-up was 4.89 (SD 2.24) years. The NL-IHRS had moderate to good discrimination for incident CVD across geographic regions (concordance statistic (C-statistic) ranging from 0.64 to 0.74), although recalibration was necessary in all regions, which improved its performance in the overall cohort (increase in C-statistic from 0.69 to 0.72, p<0.001). Regional recalibration was also necessary for the FC-IHRS, which also improved its overall discrimination (increase in C-statistic from 0.71 to 0.74, p<0.001). In 85 078 participants with complete data for both scores, discrimination was only modestly better with the FC-IHRS compared with the NL-IHRS (0.74 vs 0.73, p<0.001).

    CONCLUSIONS: External validations of the NL-IHRS and FC-IHRS suggest that regionally recalibrated versions of both can be useful for estimating CVD risk across a diverse range of community-based populations. CVD prediction using a non-laboratory score can provide similar accuracy to laboratory-based methods.

  3. Raina P, Sohel N, Oremus M, Shannon H, Mony P, Kumar R, et al.
    Inj Prev, 2016 Apr;22(2):92-98.
    PMID: 26512093 DOI: 10.1136/injuryprev-2014-041476
    To assess risk factors associated with non-fatal injuries (NFIs) from road traffic accidents (RTAs) or falls.
  4. O'Donnell M, Mente A, Rangarajan S, McQueen MJ, O'Leary N, Yin L, et al.
    BMJ, 2019 03 13;364:l772.
    PMID: 30867146 DOI: 10.1136/bmj.l772
    OBJECTIVE: To evaluate the joint association of sodium and potassium urinary excretion (as surrogate measures of intake) with cardiovascular events and mortality, in the context of current World Health Organization recommendations for daily intake (<2.0 g sodium, >3.5 g potassium) in adults.

    DESIGN: International prospective cohort study.

    SETTING: 18 high, middle, and low income countries, sampled from urban and rural communities.

    PARTICIPANTS: 103 570 people who provided morning fasting urine samples.

    MAIN OUTCOME MEASURES: Association of estimated 24 hour urinary sodium and potassium excretion (surrogates for intake) with all cause mortality and major cardiovascular events, using multivariable Cox regression. A six category variable for joint sodium and potassium was generated: sodium excretion (low (<3 g/day), moderate (3-5 g/day), and high (>5 g/day) sodium intakes) by potassium excretion (greater/equal or less than median 2.1 g/day).

    RESULTS: Mean estimated sodium and potassium urinary excretion were 4.93 g/day and 2.12 g/day, respectively. After a median follow-up of 8.2 years, 7884 (6.1%) participants had died or experienced a major cardiovascular event. Increasing urinary sodium excretion was positively associated with increasing potassium excretion (unadjusted r=0.34), and only 0.002% had a concomitant urinary excretion of <2.0 g/day of sodium and >3.5 g/day of potassium. A J-shaped association was observed of sodium excretion and inverse association of potassium excretion with death and cardiovascular events. For joint sodium and potassium excretion categories, the lowest risk of death and cardiovascular events occurred in the group with moderate sodium excretion (3-5 g/day) and higher potassium excretion (21.9% of cohort). Compared with this reference group, the combinations of low potassium with low sodium excretion (hazard ratio 1.23, 1.11 to 1.37; 7.4% of cohort) and low potassium with high sodium excretion (1.21, 1.11 to 1.32; 13.8% of cohort) were associated with the highest risk, followed by low sodium excretion (1.19, 1.02 to 1.38; 3.3% of cohort) and high sodium excretion (1.10, 1.02 to 1.18; 29.6% of cohort) among those with potassium excretion greater than the median. Higher potassium excretion attenuated the increased cardiovascular risk associated with high sodium excretion (P for interaction=0.007).

    CONCLUSIONS: These findings suggest that the simultaneous target of low sodium intake (<2 g/day) with high potassium intake (>3.5 g/day) is extremely uncommon. Combined moderate sodium intake (3-5 g/day) with high potassium intake is associated with the lowest risk of mortality and cardiovascular events.

  5. Jenkins DJA, Dehghan M, Mente A, Bangdiwala SI, Rangarajan S, Srichaikul K, et al.
    N Engl J Med, 2021 04 08;384(14):1312-1322.
    PMID: 33626252 DOI: 10.1056/NEJMoa2007123
    BACKGROUND: Most data regarding the association between the glycemic index and cardiovascular disease come from high-income Western populations, with little information from non-Western countries with low or middle incomes. To fill this gap, data are needed from a large, geographically diverse population.

    METHODS: This analysis includes 137,851 participants between the ages of 35 and 70 years living on five continents, with a median follow-up of 9.5 years. We used country-specific food-frequency questionnaires to determine dietary intake and estimated the glycemic index and glycemic load on the basis of the consumption of seven categories of carbohydrate foods. We calculated hazard ratios using multivariable Cox frailty models. The primary outcome was a composite of a major cardiovascular event (cardiovascular death, nonfatal myocardial infarction, stroke, and heart failure) or death from any cause.

    RESULTS: In the study population, 8780 deaths and 8252 major cardiovascular events occurred during the follow-up period. After performing extensive adjustments comparing the lowest and highest glycemic-index quintiles, we found that a diet with a high glycemic index was associated with an increased risk of a major cardiovascular event or death, both among participants with preexisting cardiovascular disease (hazard ratio, 1.51; 95% confidence interval [CI], 1.25 to 1.82) and among those without such disease (hazard ratio, 1.21; 95% CI, 1.11 to 1.34). Among the components of the primary outcome, a high glycemic index was also associated with an increased risk of death from cardiovascular causes. The results with respect to glycemic load were similar to the findings regarding the glycemic index among the participants with cardiovascular disease at baseline, but the association was not significant among those without preexisting cardiovascular disease.

    CONCLUSIONS: In this study, a diet with a high glycemic index was associated with an increased risk of cardiovascular disease and death. (Funded by the Population Health Research Institute and others.).

  6. Chow CK, Ramasundarahettige C, Hu W, AlHabib KF, Avezum A, Cheng X, et al.
    Lancet Diabetes Endocrinol, 2018 10;6(10):798-808.
    PMID: 30170949 DOI: 10.1016/S2213-8587(18)30233-X
    BACKGROUND: Data are scarce on the availability and affordability of essential medicines for diabetes. Our aim was to examine the availability and affordability of metformin, sulfonylureas, and insulin across multiple regions of the world and explore the effect of these on medicine use.

    METHODS: In the Prospective Urban Rural Epidemiology (PURE) study, participants aged 35-70 years (n=156 625) were recruited from 110 803 households, in 604 communities and 22 countries; availability (presence of any dose of medication in the pharmacy on the day of audit) and medicine cost data were collected from pharmacies with the Environmental Profile of a Community's Health audit tool. Our primary analysis was to describe the availability and affordability of metformin and insulin and also commonly used and prescribed combinations of two medicines for diabetes management (two oral drugs, metformin plus a sulphonylurea [either glibenclamide (also known as glyburide) or gliclazide] and one oral drug plus insulin [metformin plus insulin]). Medicines were defined as affordable if the cost of medicines was less than 20% of capacity-to-pay (the household income minus food expenditure). Our analyses included data collected in pharmacies and data from representative samples of households. Data on availability were ascertained during the pharmacy audit, as were data on cost of medications. These cost data were used to estimate the cost of a month's supply of essential medicines for diabetes. We estimated affordability of medicines using income data from household surveys.

    FINDINGS: Metformin was available in 113 (100%) of 113 pharmacies from high-income countries, 112 (88·2%) of 127 pharmacies in upper-middle-income countries, 179 (86·1%) of 208 pharmacies in lower-middle-income countries, 44 (64·7%) of 68 pharmacies in low-income countries (excluding India), and 88 (100%) of 88 pharmacies in India. Insulin was available in 106 (93·8%) pharmacies in high-income countries, 51 (40·2%) pharmacies in upper-middle-income countries, 61 (29·3%) pharmacies in lower-middle-income countries, seven (10·3%) pharmacies in lower-income countries, and 67 (76·1%) of 88 pharmacies in India. We estimated 0·7% of households in high-income countries and 26·9% of households in low-income countries could not afford metformin and 2·8% of households in high-income countries and 63·0% of households in low-income countries could not afford insulin. Among the 13 569 (8·6% of PURE participants) that reported a diagnosis of diabetes, 1222 (74·0%) participants reported diabetes medicine use in high-income countries compared with 143 (29·6%) participants in low-income countries. In multilevel models, availability and affordability were significantly associated with use of diabetes medicines.

    INTERPRETATION: Availability and affordability of essential diabetes medicines are poor in low-income and middle-income countries. Awareness of these global differences might importantly drive change in access for patients with diabetes.

    FUNDING: Full funding sources listed at the end of the paper (see Acknowledgments).

  7. Attaei MW, Khatib R, McKee M, Lear S, Dagenais G, Igumbor EU, et al.
    Lancet Public Health, 2017 09;2(9):e411-e419.
    PMID: 29253412 DOI: 10.1016/S2468-2667(17)30141-X
    BACKGROUND: Hypertension is considered the most important risk factor for cardiovascular diseases, but its control is poor worldwide. We aimed to assess the availability and affordability of blood pressure-lowering medicines, and the association with use of these medicines and blood pressure control in countries at varying levels of economic development.

    METHODS: We analysed the availability, costs, and affordability of blood pressure-lowering medicines with data recorded from 626 communities in 20 countries participating in the Prospective Urban Rural Epidemiological (PURE) study. Medicines were considered available if they were present in the local pharmacy when surveyed, and affordable if their combined cost was less than 20% of the households' capacity to pay. We related information about availability and affordability to use of these medicines and blood pressure control with multilevel mixed-effects logistic regression models, and compared results for high-income, upper-middle-income, lower-middle-income, and low-income countries. Data for India are presented separately because it has a large generic pharmaceutical industry and a higher availability of medicines than other countries at the same economic level.

    FINDINGS: The availability of two or more classes of blood pressure-lowering drugs was lower in low-income and middle-income countries (except for India) than in high-income countries. The proportion of communities with four drug classes available was 94% in high-income countries (108 of 115 communities), 76% in India (68 of 90), 71% in upper-middle-income countries (90 of 126), 47% in lower-middle-income countries (107 of 227), and 13% in low-income countries (nine of 68). The proportion of households unable to afford two blood pressure-lowering medicines was 31% in low-income countries (1069 of 3479 households), 9% in middle-income countries (5602 of 65 471), and less than 1% in high-income countries (44 of 10 880). Participants with known hypertension in communities that had all four drug classes available were more likely to use at least one blood pressure-lowering medicine (adjusted odds ratio [OR] 2·23, 95% CI 1·59-3·12); p<0·0001), combination therapy (1·53, 1·13-2·07; p=0·054), and have their blood pressure controlled (2·06, 1·69-2·50; p<0·0001) than were those in communities where blood pressure-lowering medicines were not available. Participants with known hypertension from households able to afford four blood pressure-lowering drug classes were more likely to use at least one blood pressure-lowering medicine (adjusted OR 1·42, 95% CI 1·25-1·62; p<0·0001), combination therapy (1·26, 1·08-1·47; p=0·0038), and have their blood pressure controlled (1·13, 1·00-1·28; p=0·0562) than were those unable to afford the medicines.

    INTERPRETATION: A large proportion of communities in low-income and middle-income countries do not have access to more than one blood pressure-lowering medicine and, when available, they are often not affordable. These factors are associated with poor blood pressure control. Ensuring access to affordable blood pressure-lowering medicines is essential for control of hypertension in low-income and middle-income countries.

    FUNDING: Population Health Research Institute, the Canadian Institutes of Health Research, Heart and Stroke Foundation of Ontario, Canadian Institutes of Health Research Strategy for Patient Oriented Research through the Ontario SPOR Support Unit, the Ontario Ministry of Health and Long-Term Care, pharmaceutical companies (with major contributions from AstraZeneca [Canada], Sanofi Aventis [France and Canada], Boehringer Ingelheim [Germany amd Canada], Servier, and GlaxoSmithKline), Novartis and King Pharma, and national or local organisations in participating countries.

  8. de Souza RJ, Dehghan M, Mente A, Bangdiwala SI, Ahmed SH, Alhabib KF, et al.
    Am J Clin Nutr, 2020 07 01;112(1):208-219.
    PMID: 32433740 DOI: 10.1093/ajcn/nqaa108
    BACKGROUND: The association of nuts with cardiovascular disease and deaths has been investigated mostly in Europe, the USA, and East Asia, with few data available from other regions of the world or from low- and middle-income countries.

    OBJECTIVE: To assess the association of nuts with mortality and cardiovascular disease (CVD).

    METHODS: The Prospective Urban Rural Epidemiology study is a large multinational prospective cohort study of adults aged 35-70 y from 16 low-, middle-, and high-income countries on 5 continents. Nut intake (tree nuts and ground nuts) was measured at the baseline visit, using country-specific validated FFQs. The primary outcome was a composite of mortality or major cardiovascular event [nonfatal myocardial infarction (MI), stroke, or heart failure].

    RESULTS: We followed 124,329 participants (age = 50.7 y, SD = 10.2; 41.5% male) for a median of 9.5 y. We recorded 10,928 composite events [deaths (n = 8,662) or major cardiovascular events (n = 5,979)]. Higher nut intake (>120 g per wk compared with <30 g per mo) was associated with a lower risk of the primary composite outcome of mortality or major cardiovascular event [multivariate HR (mvHR): 0.88; 95% CI: 0.80, 0.96; P-trend = 0.0048]. Significant reductions in total (mvHR: 0.77; 95% CI: 0.69, 0.87; P-trend <0.0001), cardiovascular (mvHR: 0.72; 95% CI: 0.56, 0.92; P-trend = 0.048), and noncardiovascular mortality (mvHR: 0.82; 95% CI: 0.70, 0.96; P-trend = 0.0046) with a trend to reduced cancer mortality (mvHR: 0.81; 95% CI: 0.65, 1.00; P-trend = 0.081) were observed. No significant associations of nuts were seen with major CVD (mvHR: 0.91; 95% CI: 0.81, 1.02; P-trend = 0.14), stroke (mvHR: 0.98; 95% CI: 0.84, 1.14; P-trend = 0.76), or MI (mvHR: 0.86; 95% CI: 0.72, 1.04; P-trend = 0.29).

    CONCLUSIONS: Higher nut intake was associated with lower mortality risk from both cardiovascular and noncardiovascular causes in low-, middle-, and high-income countries.

  9. Mente A, O'Donnell M, Rangarajan S, Dagenais G, Lear S, McQueen M, et al.
    Lancet, 2016 Jul 30;388(10043):465-75.
    PMID: 27216139 DOI: 10.1016/S0140-6736(16)30467-6
    BACKGROUND: Several studies reported a U-shaped association between urinary sodium excretion and cardiovascular disease events and mortality. Whether these associations vary between those individuals with and without hypertension is uncertain. We aimed to explore whether the association between sodium intake and cardiovascular disease events and all-cause mortality is modified by hypertension status.

    METHODS: In this pooled analysis, we studied 133,118 individuals (63,559 with hypertension and 69,559 without hypertension), median age of 55 years (IQR 45-63), from 49 countries in four large prospective studies and estimated 24-h urinary sodium excretion (as group-level measure of intake). We related this to the composite outcome of death and major cardiovascular disease events over a median of 4.2 years (IQR 3.0-5.0) and blood pressure.

    FINDINGS: Increased sodium intake was associated with greater increases in systolic blood pressure in individuals with hypertension (2.08 mm Hg change per g sodium increase) compared with individuals without hypertension (1.22 mm Hg change per g; pinteraction<0.0001). In those individuals with hypertension (6835 events), sodium excretion of 7 g/day or more (7060 [11%] of population with hypertension: hazard ratio [HR] 1.23 [95% CI 1.11-1.37]; p<0.0001) and less than 3 g/day (7006 [11%] of population with hypertension: 1.34 [1.23-1.47]; p<0.0001) were both associated with increased risk compared with sodium excretion of 4-5 g/day (reference 25% of the population with hypertension). In those individuals without hypertension (3021 events), compared with 4-5 g/day (18,508 [27%] of the population without hypertension), higher sodium excretion was not associated with risk of the primary composite outcome (≥ 7 g/day in 6271 [9%] of the population without hypertension; HR 0.90 [95% CI 0.76-1.08]; p=0.2547), whereas an excretion of less than 3 g/day was associated with a significantly increased risk (7547 [11%] of the population without hypertension; HR 1.26 [95% CI 1.10-1.45]; p=0.0009).

    INTERPRETATION: Compared with moderate sodium intake, high sodium intake is associated with an increased risk of cardiovascular events and death in hypertensive populations (no association in normotensive population), while the association of low sodium intake with increased risk of cardiovascular events and death is observed in those with or without hypertension. These data suggest that lowering sodium intake is best targeted at populations with hypertension who consume high sodium diets.

    FUNDING: Full funding sources listed at end of paper (see Acknowledgments).

  10. Mohan D, Mente A, Dehghan M, Rangarajan S, O'Donnell M, Hu W, et al.
    JAMA Intern Med, 2021 05 01;181(5):631-649.
    PMID: 33683310 DOI: 10.1001/jamainternmed.2021.0036
    Importance: Cohort studies report inconsistent associations between fish consumption, a major source of long-chain ω-3 fatty acids, and risk of cardiovascular disease (CVD) and mortality. Whether the associations vary between those with and those without vascular disease is unknown.

    Objective: To examine whether the associations of fish consumption with risk of CVD or of mortality differ between individuals with and individuals without vascular disease.

    Design, Setting, and Participants: This pooled analysis of individual participant data involved 191 558 individuals from 4 cohort studies-147 645 individuals (139 827 without CVD and 7818 with CVD) from 21 countries in the Prospective Urban Rural Epidemiology (PURE) study and 43 413 patients with vascular disease in 3 prospective studies from 40 countries. Adjusted hazard ratios (HRs) were calculated by multilevel Cox regression separately within each study and then pooled using random-effects meta-analysis. This analysis was conducted from January to June 2020.

    Exposures: Fish consumption was recorded using validated food frequency questionnaires. In 1 of the cohorts with vascular disease, a separate qualitative food frequency questionnaire was used to assess intake of individual types of fish.

    Main Outcomes and Measures: Mortality and major CVD events (including myocardial infarction, stroke, congestive heart failure, or sudden death).

    Results: Overall, 191 558 participants with a mean (SD) age of 54.1 (8.0) years (91 666 [47.9%] male) were included in the present analysis. During 9.1 years of follow-up in PURE, compared with little or no fish intake (≤50 g/mo), an intake of 350 g/wk or more was not associated with risk of major CVD (HR, 0.95; 95% CI, 0.86-1.04) or total mortality (HR, 0.96; 0.88-1.05). By contrast, in the 3 cohorts of patients with vascular disease, the HR for risk of major CVD (HR, 0.84; 95% CI, 0.73-0.96) and total mortality (HR, 0.82; 95% CI, 0.74-0.91) was lowest with intakes of at least 175 g/wk (or approximately 2 servings/wk) compared with 50 g/mo or lower, with no further apparent decrease in HR with consumption of 350 g/wk or higher. Fish with higher amounts of ω-3 fatty acids were strongly associated with a lower risk of CVD (HR, 0.94; 95% CI, 0.92-0.97 per 5-g increment of intake), whereas other fish were neutral (collected in 1 cohort of patients with vascular disease). The association between fish intake and each outcome varied by CVD status, with a lower risk found among patients with vascular disease but not in general populations (for major CVD, I2 = 82.6 [P = .02]; for death, I2 = 90.8 [P = .001]).

    Conclusions and Relevance: Findings of this pooled analysis of 4 cohort studies indicated that a minimal fish intake of 175 g (approximately 2 servings) weekly is associated with lower risk of major CVD and mortality among patients with prior CVD but not in general populations. The consumption of fish (especially oily fish) should be evaluated in randomized trials of clinical outcomes among people with vascular disease.

  11. Duong M, Islam S, Rangarajan S, Teo K, O'Byrne PM, Schünemann HJ, et al.
    Lancet Respir Med, 2013 Oct;1(8):599-609.
    PMID: 24461663 DOI: 10.1016/S2213-2600(13)70164-4
    BACKGROUND: Despite the rising burden of chronic respiratory diseases, global data for lung function are not available. We investigated global variation in lung function in healthy populations by region to establish whether regional factors contribute to lung function.

    METHODS: In an international, community-based prospective study, we enrolled individuals from communities in 17 countries between Jan 1, 2005, and Dec 31, 2009 (except for in Karnataka, India, where enrolment began on Jan 1, 2003). Trained local staff obtained data from participants with interview-based questionnaires, measured weight and height, and recorded forced expiratory volume in 1 s (FEV₁) and forced vital capacity (FVC). We analysed data from participants 130-190 cm tall and aged 34-80 years who had a 5 pack-year smoking history or less, who were not affected by specified disorders and were not pregnant, and for whom we had at least two FEV₁ and FVC measurements that did not vary by more than 200 mL. We divided the countries into seven socioeconomic and geographical regions: south Asia (India, Bangladesh, and Pakistan), east Asia (China), southeast Asia (Malaysia), sub-Saharan Africa (South Africa and Zimbabwe), South America (Argentina, Brazil, Colombia, and Chile), the Middle East (Iran, United Arab Emirates, and Turkey), and North America or Europe (Canada, Sweden, and Poland). Data were analysed with non-linear regression to model height, age, sex, and region.

    FINDINGS: 153,996 individuals were enrolled from 628 communities. Data from 38,517 asymptomatic, healthy non-smokers (25,614 women; 12,903 men) were analysed. For all regions, lung function increased with height non-linearly, decreased with age, and was proportionately higher in men than women. The quantitative effect of height, age, and sex on lung function differed by region. Compared with North America or Europe, FEV1 adjusted for height, age, and sex was 31·3% (95% CI 30·8-31·8%) lower in south Asia, 24·2% (23·5-24·9%) lower in southeast Asia, 12·8% (12·4-13·4%) lower in east Asia, 20·9% (19·9-22·0%) lower in sub-Saharan Africa, 5·7% (5·1-6·4%) lower in South America, and 11·2% (10·6-11·8%) lower in the Middle East. We recorded similar but larger differences in FVC. The differences were not accounted for by variation in weight, urban versus rural location, and education level between regions.

    INTERPRETATION: Lung function differs substantially between regions of the world. These large differences are not explained by factors investigated in this study; the contribution of socioeconomic, genetic, and environmental factors and their interactions with lung function and lung health need further clarification.

    FUNDING: Full funding sources listed at end of the paper (see Acknowledgments).

  12. Dehghan M, Mente A, Rangarajan S, Sheridan P, Mohan V, Iqbal R, et al.
    Lancet, 2018 11 24;392(10161):2288-2297.
    PMID: 30217460 DOI: 10.1016/S0140-6736(18)31812-9
    BACKGROUND: Dietary guidelines recommend minimising consumption of whole-fat dairy products, as they are a source of saturated fats and presumed to adversely affect blood lipids and increase cardiovascular disease and mortality. Evidence for this contention is sparse and few data for the effects of dairy consumption on health are available from low-income and middle-income countries. Therefore, we aimed to assess the associations between total dairy and specific types of dairy products with mortality and major cardiovascular disease.

    METHODS: The Prospective Urban Rural Epidemiology (PURE) study is a large multinational cohort study of individuals aged 35-70 years enrolled from 21 countries in five continents. Dietary intakes of dairy products for 136 384 individuals were recorded using country-specific validated food frequency questionnaires. Dairy products comprised milk, yoghurt, and cheese. We further grouped these foods into whole-fat and low-fat dairy. The primary outcome was the composite of mortality or major cardiovascular events (defined as death from cardiovascular causes, non-fatal myocardial infarction, stroke, or heart failure). Hazard ratios (HRs) were calculated using multivariable Cox frailty models with random intercepts to account for clustering of participants by centre.

    FINDINGS: Between Jan 1, 2003, and July 14, 2018, we recorded 10 567 composite events (deaths [n=6796] or major cardiovascular events [n=5855]) during the 9·1 years of follow-up. Higher intake of total dairy (>2 servings per day compared with no intake) was associated with a lower risk of the composite outcome (HR 0·84, 95% CI 0·75-0·94; ptrend=0·0004), total mortality (0·83, 0·72-0·96; ptrend=0·0052), non-cardiovascular mortality (0·86, 0·72-1·02; ptrend=0·046), cardiovascular mortality (0·77, 0·58-1·01; ptrend=0·029), major cardiovascular disease (0·78, 0·67-0·90; ptrend=0·0001), and stroke (0·66, 0·53-0·82; ptrend=0·0003). No significant association with myocardial infarction was observed (HR 0·89, 95% CI 0·71-1·11; ptrend=0·163). Higher intake (>1 serving vs no intake) of milk (HR 0·90, 95% CI 0·82-0·99; ptrend=0·0529) and yogurt (0·86, 0·75-0·99; ptrend=0·0051) was associated with lower risk of the composite outcome, whereas cheese intake was not significantly associated with the composite outcome (0·88, 0·76-1·02; ptrend=0·1399). Butter intake was low and was not significantly associated with clinical outcomes (HR 1·09, 95% CI 0·90-1·33; ptrend=0·4113).

    INTERPRETATION: Dairy consumption was associated with lower risk of mortality and major cardiovascular disease events in a diverse multinational cohort.

    FUNDING: Full funding sources are listed at the end of the paper (see Acknowledgments).

  13. Dehghan M, Mente A, Zhang X, Swaminathan S, Li W, Mohan V, et al.
    Lancet, 2017 Nov 04;390(10107):2050-2062.
    PMID: 28864332 DOI: 10.1016/S0140-6736(17)32252-3
    BACKGROUND: The relationship between macronutrients and cardiovascular disease and mortality is controversial. Most available data are from European and North American populations where nutrition excess is more likely, so their applicability to other populations is unclear.

    METHODS: The Prospective Urban Rural Epidemiology (PURE) study is a large, epidemiological cohort study of individuals aged 35-70 years (enrolled between Jan 1, 2003, and March 31, 2013) in 18 countries with a median follow-up of 7·4 years (IQR 5·3-9·3). Dietary intake of 135 335 individuals was recorded using validated food frequency questionnaires. The primary outcomes were total mortality and major cardiovascular events (fatal cardiovascular disease, non-fatal myocardial infarction, stroke, and heart failure). Secondary outcomes were all myocardial infarctions, stroke, cardiovascular disease mortality, and non-cardiovascular disease mortality. Participants were categorised into quintiles of nutrient intake (carbohydrate, fats, and protein) based on percentage of energy provided by nutrients. We assessed the associations between consumption of carbohydrate, total fat, and each type of fat with cardiovascular disease and total mortality. We calculated hazard ratios (HRs) using a multivariable Cox frailty model with random intercepts to account for centre clustering.

    FINDINGS: During follow-up, we documented 5796 deaths and 4784 major cardiovascular disease events. Higher carbohydrate intake was associated with an increased risk of total mortality (highest [quintile 5] vs lowest quintile [quintile 1] category, HR 1·28 [95% CI 1·12-1·46], ptrend=0·0001) but not with the risk of cardiovascular disease or cardiovascular disease mortality. Intake of total fat and each type of fat was associated with lower risk of total mortality (quintile 5 vs quintile 1, total fat: HR 0·77 [95% CI 0·67-0·87], ptrend<0·0001; saturated fat, HR 0·86 [0·76-0·99], ptrend=0·0088; monounsaturated fat: HR 0·81 [0·71-0·92], ptrend<0·0001; and polyunsaturated fat: HR 0·80 [0·71-0·89], ptrend<0·0001). Higher saturated fat intake was associated with lower risk of stroke (quintile 5 vs quintile 1, HR 0·79 [95% CI 0·64-0·98], ptrend=0·0498). Total fat and saturated and unsaturated fats were not significantly associated with risk of myocardial infarction or cardiovascular disease mortality.

    INTERPRETATION: High carbohydrate intake was associated with higher risk of total mortality, whereas total fat and individual types of fat were related to lower total mortality. Total fat and types of fat were not associated with cardiovascular disease, myocardial infarction, or cardiovascular disease mortality, whereas saturated fat had an inverse association with stroke. Global dietary guidelines should be reconsidered in light of these findings.

    FUNDING: Full funding sources listed at the end of the paper (see Acknowledgments).

  14. Mente A, Dehghan M, Rangarajan S, McQueen M, Dagenais G, Wielgosz A, et al.
    Lancet Diabetes Endocrinol, 2017 10;5(10):774-787.
    PMID: 28864143 DOI: 10.1016/S2213-8587(17)30283-8
    BACKGROUND: The relation between dietary nutrients and cardiovascular disease risk markers in many regions worldwide is unknown. In this study, we investigated the effect of dietary nutrients on blood lipids and blood pressure, two of the most important risk factors for cardiovascular disease, in low-income, middle-income, and high-income countries.

    METHODS: We studied 125 287 participants from 18 countries in North America, South America, Europe, Africa, and Asia in the Prospective Urban Rural Epidemiology (PURE) study. Habitual food intake was measured with validated food frequency questionnaires. We assessed the associations between nutrients (total fats, saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, carbohydrates, protein, and dietary cholesterol) and cardiovascular disease risk markers using multilevel modelling. The effect of isocaloric replacement of saturated fatty acids with other fats and carbohydrates was determined overall and by levels of intakes by use of nutrient density models. We did simulation modelling in which we assumed that the effects of saturated fatty acids on cardiovascular disease events was solely related to their association through an individual risk marker, and then compared these simulated risk marker-based estimates with directly observed associations of saturated fatty acids with cardiovascular disease events.

    FINDINGS: Participants were enrolled into the study from Jan 1, 2003, to March 31, 2013. Intake of total fat and each type of fat was associated with higher concentrations of total cholesterol and LDL cholesterol, but also with higher HDL cholesterol and apolipoprotein A1 (ApoA1), and lower triglycerides, ratio of total cholesterol to HDL cholesterol, ratio of triglycerides to HDL cholesterol, and ratio of apolipoprotein B (ApoB) to ApoA1 (all ptrend<0·0001). Higher carbohydrate intake was associated with lower total cholesterol, LDL cholesterol, and ApoB, but also with lower HDL cholesterol and ApoA1, and higher triglycerides, ratio of total cholesterol to HDL cholesterol, ratio of triglycerides to HDL cholesterol, and ApoB-to-ApoA1 ratio (all ptrend<0·0001, apart from ApoB [ptrend=0·0014]). Higher intakes of total fat, saturated fatty acids, and carbohydrates were associated with higher blood pressure, whereas higher protein intake was associated with lower blood pressure. Replacement of saturated fatty acids with carbohydrates was associated with the most adverse effects on lipids, whereas replacement of saturated fatty acids with unsaturated fats improved some risk markers (LDL cholesterol and blood pressure), but seemed to worsen others (HDL cholesterol and triglycerides). The observed associations between saturated fatty acids and cardiovascular disease events were approximated by the simulated associations mediated through the effects on the ApoB-to-ApoA1 ratio, but not with other lipid markers including LDL cholesterol.

    INTERPRETATION: Our data are at odds with current recommendations to reduce total fat and saturated fats. Reducing saturated fatty acid intake and replacing it with carbohydrate has an adverse effect on blood lipids. Substituting saturated fatty acids with unsaturated fats might improve some risk markers, but might worsen others. Simulations suggest that ApoB-to-ApoA1 ratio probably provides the best overall indication of the effect of saturated fatty acids on cardiovascular disease risk among the markers tested. Focusing on a single lipid marker such as LDL cholesterol alone does not capture the net clinical effects of nutrients on cardiovascular risk.

    FUNDING: Full funding sources listed at the end of the paper (see Acknowledgments).

  15. Dehghan M, Mente A, Rangarajan S, Mohan V, Swaminathan S, Avezum A, et al.
    Am J Clin Nutr, 2023 Jan;117(1):55-63.
    PMID: 36789944 DOI: 10.1016/j.ajcnut.2022.10.014
    BACKGROUND: Higher intake of ultra-processed foods (UPFs) has been associated with increased risk of CVD and mortality in observational studies from Western countries but data from non-Western countries are limited.

    OBJECTIVES: We aimed to assess the association between consumption of UPFs and risk of mortality and major CVD in a cohort from multiple world regions.

    DESIGN: This analysis includes 138,076 participants without a history of CVD between the ages of 35 and 70 y living on 5 continents, with a median follow-up of 10.2 y. We used country-specific validated food-frequency questionnaires to determine individuals' food intake. We classified foods and beverages based on the NOVA classification into UPFs. The primary outcome was total mortality (CV and non-CV mortality) and secondary outcomes were incident major cardiovascular events. We calculated hazard ratios using multivariable Cox frailty models and evaluated the association of UPFs with total mortality, CV mortality, non-CV mortality, and major CVD events.

    RESULTS: In this study, 9227 deaths and 7934 major cardiovascular events were recorded during the follow-up period. We found a diet high in UPFs (≥2 servings/d compared with 0 intake) was associated with higher risk of mortality (HR: 1.28; 95% CI: 1.15, 1.42; P-trend < 0.001), CV mortality (HR: 1.17; 95% CI: 0.98, 1.41; P-trend = 0.04), and non-CV mortality (HR: 1.32; 95% CI 1.17, 1.50; P-trend < 0.001). We did not find a significant association between UPF intake and risk of major CVD.

    CONCLUSIONS: A diet with a high intake of UPFs was associated with a higher risk of mortality in a diverse multinational study. Globally, limiting the consumption of UPFs should be encouraged.

  16. Miller V, Jenkins DA, Dehghan M, Srichaikul K, Rangarajan S, Mente A, et al.
    Lancet Diabetes Endocrinol, 2024 May;12(5):330-338.
    PMID: 38588684 DOI: 10.1016/S2213-8587(24)00069-X
    BACKGROUND: The association between the glycaemic index and the glycaemic load with type 2 diabetes incidence is controversial. We aimed to evaluate this association in an international cohort with diverse glycaemic index and glycaemic load diets.

    METHODS: The PURE study is a prospective cohort study of 127 594 adults aged 35-70 years from 20 high-income, middle-income, and low-income countries. Diet was assessed at baseline using country-specific validated food frequency questionnaires. The glycaemic index and the glycaemic load were estimated on the basis of the intake of seven categories of carbohydrate-containing foods. Participants were categorised into quintiles of glycaemic index and glycaemic load. The primary outcome was incident type 2 diabetes. Multivariable Cox Frailty models with random intercepts for study centre were used to calculate hazard ratios (HRs).

    FINDINGS: During a median follow-up of 11·8 years (IQR 9·0-13·0), 7326 (5·7%) incident cases of type 2 diabetes occurred. In multivariable adjusted analyses, a diet with a higher glycaemic index was significantly associated with a higher risk of diabetes (quintile 5 vs quintile 1; HR 1·15 [95% CI 1·03-1·29]). Participants in the highest quintile of the glycaemic load had a higher risk of incident type 2 diabetes compared with those in the lowest quintile (HR 1·21, 95% CI 1·06-1·37). The glycaemic index was more strongly associated with diabetes among individuals with a higher BMI (quintile 5 vs quintile 1; HR 1·23 [95% CI 1·08-1·41]) than those with a lower BMI (quintile 5 vs quintile 1; 1·10 [0·87-1·39]; p interaction=0·030).

    INTERPRETATION: Diets with a high glycaemic index and a high glycaemic load were associated with a higher risk of incident type 2 diabetes in a multinational cohort spanning five continents. Our findings suggest that consuming low glycaemic index and low glycaemic load diets might prevent the development of type 2 diabetes.

    FUNDING: Full funding sources are listed at the end of the Article.

  17. Rosengren A, Teo K, Rangarajan S, Kabali C, Khumalo I, Kutty VR, et al.
    Int J Obes (Lond), 2015 Aug;39(8):1217-23.
    PMID: 25869608 DOI: 10.1038/ijo.2015.48
    Psychosocial stress has been proposed to contribute to obesity, particularly abdominal, or central obesity, through chronic activation of the neuroendocrine systems. However, these putative relationships are complex and dependent on country and cultural context. We investigated the association between psychosocial factors and general and abdominal obesity in the Prospective Urban Rural Epidemiologic study.
  18. Rosengren A, Smyth A, Rangarajan S, Ramasundarahettige C, Bangdiwala SI, AlHabib KF, et al.
    Lancet Glob Health, 2019 06;7(6):e748-e760.
    PMID: 31028013 DOI: 10.1016/S2214-109X(19)30045-2
    BACKGROUND: Socioeconomic status is associated with differences in risk factors for cardiovascular disease incidence and outcomes, including mortality. However, it is unclear whether the associations between cardiovascular disease and common measures of socioeconomic status-wealth and education-differ among high-income, middle-income, and low-income countries, and, if so, why these differences exist. We explored the association between education and household wealth and cardiovascular disease and mortality to assess which marker is the stronger predictor of outcomes, and examined whether any differences in cardiovascular disease by socioeconomic status parallel differences in risk factor levels or differences in management.

    METHODS: In this large-scale prospective cohort study, we recruited adults aged between 35 years and 70 years from 367 urban and 302 rural communities in 20 countries. We collected data on families and households in two questionnaires, and data on cardiovascular risk factors in a third questionnaire, which was supplemented with physical examination. We assessed socioeconomic status using education and a household wealth index. Education was categorised as no or primary school education only, secondary school education, or higher education, defined as completion of trade school, college, or university. Household wealth, calculated at the household level and with household data, was defined by an index on the basis of ownership of assets and housing characteristics. Primary outcomes were major cardiovascular disease (a composite of cardiovascular deaths, strokes, myocardial infarction, and heart failure), cardiovascular mortality, and all-cause mortality. Information on specific events was obtained from participants or their family.

    FINDINGS: Recruitment to the study began on Jan 12, 2001, with most participants enrolled between Jan 6, 2005, and Dec 4, 2014. 160 299 (87·9%) of 182 375 participants with baseline data had available follow-up event data and were eligible for inclusion. After exclusion of 6130 (3·8%) participants without complete baseline or follow-up data, 154 169 individuals remained for analysis, from five low-income, 11 middle-income, and four high-income countries. Participants were followed-up for a mean of 7·5 years. Major cardiovascular events were more common among those with low levels of education in all types of country studied, but much more so in low-income countries. After adjustment for wealth and other factors, the HR (low level of education vs high level of education) was 1·23 (95% CI 0·96-1·58) for high-income countries, 1·59 (1·42-1·78) in middle-income countries, and 2·23 (1·79-2·77) in low-income countries (pinteraction<0·0001). We observed similar results for all-cause mortality, with HRs of 1·50 (1·14-1·98) for high-income countries, 1·80 (1·58-2·06) in middle-income countries, and 2·76 (2·29-3·31) in low-income countries (pinteraction<0·0001). By contrast, we found no or weak associations between wealth and these two outcomes. Differences in outcomes between educational groups were not explained by differences in risk factors, which decreased as the level of education increased in high-income countries, but increased as the level of education increased in low-income countries (pinteraction<0·0001). Medical care (eg, management of hypertension, diabetes, and secondary prevention) seemed to play an important part in adverse cardiovascular disease outcomes because such care is likely to be poorer in people with the lowest levels of education compared to those with higher levels of education in low-income countries; however, we observed less marked differences in care based on level of education in middle-income countries and no or minor differences in high-income countries.

    INTERPRETATION: Although people with a lower level of education in low-income and middle-income countries have higher incidence of and mortality from cardiovascular disease, they have better overall risk factor profiles. However, these individuals have markedly poorer health care. Policies to reduce health inequities globally must include strategies to overcome barriers to care, especially for those with lower levels of education.

    FUNDING: Full funding sources are listed at the end of the paper (see Acknowledgments).

  19. Swaminathan S, Dehghan M, Raj JM, Thomas T, Rangarajan S, Jenkins D, et al.
    BMJ, 2021 02 03;372:m4948.
    PMID: 33536317 DOI: 10.1136/bmj.m4948
    OBJECTIVE: To evaluate the association between intakes of refined grains, whole grains, and white rice with cardiovascular disease, total mortality, blood lipids, and blood pressure in the Prospective Urban and Rural Epidemiology (PURE) study.

    DESIGN: Prospective cohort study.

    SETTING: PURE study in 21 countries.

    PARTICIPANTS: 148 858 participants with median follow-up of 9.5 years.

    EXPOSURES: Country specific validated food frequency questionnaires were used to assess intakes of refined grains, whole grains, and white rice.

    MAIN OUTCOME MEASURE: Composite of mortality or major cardiovascular events (defined as death from cardiovascular causes, non-fatal myocardial infarction, stroke, or heart failure). Hazard ratios were estimated for associations of grain intakes with mortality, major cardiovascular events, and their composite by using multivariable Cox frailty models with random intercepts to account for clustering by centre.

    RESULTS: Analyses were based on 137 130 participants after exclusion of those with baseline cardiovascular disease. During follow-up, 9.2% (n=12 668) of these participants had a composite outcome event. The highest category of intake of refined grains (≥350 g/day or about 7 servings/day) was associated with higher risk of total mortality (hazard ratio 1.27, 95% confidence interval 1.11 to 1.46; P for trend=0.004), major cardiovascular disease events (1.33, 1.16 to 1.52; P for trend<0.001), and their composite (1.28, 1.15 to 1.42; P for trend<0.001) compared with the lowest category of intake (<50 g/day). Higher intakes of refined grains were associated with higher systolic blood pressure. No significant associations were found between intakes of whole grains or white rice and health outcomes.

    CONCLUSION: High intake of refined grains was associated with higher risk of mortality and major cardiovascular disease events. Globally, lower consumption of refined grains should be considered.

  20. Bhavadharini B, Mohan V, Dehghan M, Rangarajan S, Swaminathan S, Rosengren A, et al.
    Diabetes Care, 2020 11;43(11):2643-2650.
    PMID: 32873587 DOI: 10.2337/dc19-2335
    OBJECTIVE: Previous prospective studies on the association of white rice intake with incident diabetes have shown contradictory results but were conducted in single countries and predominantly in Asia. We report on the association of white rice with risk of diabetes in the multinational Prospective Urban Rural Epidemiology (PURE) study.

    RESEARCH DESIGN AND METHODS: Data on 132,373 individuals aged 35-70 years from 21 countries were analyzed. White rice consumption (cooked) was categorized as <150, ≥150 to <300, ≥300 to <450, and ≥450 g/day, based on one cup of cooked rice = 150 g. The primary outcome was incident diabetes. Hazard ratios (HRs) were calculated using a multivariable Cox frailty model.

    RESULTS: During a mean follow-up period of 9.5 years, 6,129 individuals without baseline diabetes developed incident diabetes. In the overall cohort, higher intake of white rice (≥450 g/day compared with <150 g/day) was associated with increased risk of diabetes (HR 1.20; 95% CI 1.02-1.40; P for trend = 0.003). However, the highest risk was seen in South Asia (HR 1.61; 95% CI 1.13-2.30; P for trend = 0.02), followed by other regions of the world (which included South East Asia, Middle East, South America, North America, Europe, and Africa) (HR 1.41; 95% CI 1.08-1.86; P for trend = 0.01), while in China there was no significant association (HR 1.04; 95% CI 0.77-1.40; P for trend = 0.38).

    CONCLUSIONS: Higher consumption of white rice is associated with an increased risk of incident diabetes with the strongest association being observed in South Asia, while in other regions, a modest, nonsignificant association was seen.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links