Displaying all 7 publications

Abstract:
Sort:
  1. Zulkifly H, Abdul WM, Shaharuddin S, Chiau ML, Mat ZH
    Value Health, 2014 Nov;17(7):A467.
    PMID: 27201328 DOI: 10.1016/j.jval.2014.08.1312
  2. Al-Hamodi ZH, Saif-Ali R, Ismail IS, Ahmed KA, Muniandy S
    J Clin Biochem Nutr, 2012 May;50(3):184-9.
    PMID: 22573918 DOI: 10.3164/jcbn.11-48
    The plasminogen activator inhibitor-1 4G/5G and tissue plasminogen activator Alu-repeat insertion/deletion polymorphisms might be genetic determinations of increased or decreased of their plasma activities. The aim of this study was to investigate the association of plasminogen activator inhibitor-1 4G/5G and tissue plasminogen activator Alu-repeat I/D polymorphisms with metabolic syndrome parameters in normal Malaysian subjects and to assess the impact of these polymorphisms on their plasma activities and antigens. The genetic polymorphisms were genotyped in 130 normal subjects. In addition, the plasma activities and antigens of plasminogen activator inhibitor-1 and tissue plasminogen activator as well as levels of insulin, glucose, and lipid profile at fasting state were investigated. The subjects with homozygous 4G/4G showed association with an increased triglyceride (p = 0.007), body mass index (p = 0.01) and diastolic blood pressure (p = 0.03). In addition, the plasminogen activator inhibitor-1 4G/5G polymorphism modulates plasma plasminogen activator inhibitor-1 activity and antigen and tissue plasminogen activator activity (p = 0.002, 0.014, 0.003) respectively. These results showed that, the plasminogen activator inhibitor-1 4G/5G polymorphism is associated with metabolic syndrome parameters, plasminogen activator inhibitor-1 and tissue plasminogen activator activities in Malaysian subjects, and may serve to increase the risk of type 2 diabetes and cardiovascular disease in Malaysian subjects.
  3. Adil M, Mohd Zaid H, Raza F, Agam MA
    PLoS One, 2020;15(7):e0236837.
    PMID: 32730369 DOI: 10.1371/journal.pone.0236837
    Recent developments propose renewed use of surface-modified nanoparticles (NPs) for enhanced oil recovery (EOR) due to improved stability and reduced porous media retention. The enhanced surface properties render the nanoparticles more suitable compared to bare nanoparticles, for increasing the displacement efficiency of waterflooding. However, the EOR mechanisms using NPs are still not well established. This work investigates the effect of in-situ surface-modified silica nanoparticles (SiO2 NPs) on interfacial tension (IFT) and wettability behavior as a prevailing oil recovery mechanism. For this purpose, the nanoparticles have been synthesized via a one-step sol-gel method using surface-modification agents, including Triton X-100 (non-ionic surfactant) and polyethylene glycol (polymer), and characterized using various techniques. These results exhibit the well-defined spherical particles, particularly in the presence of Triton X-100 (TX-100), with particle diameter between 13 to 27 nm. To this end, SiO2 nanofluids were formed by dispersing nanoparticles (0.05 wt.%, 0.075 wt.%, 0.1 wt.%, and 0.2 wt.%) in 3 wt.% NaCl to study the impact of surface functionalization on the stability of the nanoparticle suspension. The optimal stability conditions were obtained at 0.1 wt.% SiO2 NPs at a basic pH of 10 and 9.5 for TX-100/ SiO2 and PEG/SiO nanofluids, respectively. Finally, the surface-treated SiO2 nanoparticles were found to change the wettability of treated (oil-wet) surface into water-wet by altering the contact angle from 130° to 78° (in case of TX-100/SiO2) measured against glass surface representing carbonate reservoir rock. IFT results also reveal that the surfactant treatment greatly reduced the oil-water IFT by 30%, compared to other applied NPs. These experimental results suggest that the use of surface-modified SiO2 nanoparticles could facilitate the displacement efficiency by reducing IFT and altering the wettability of carbonate reservoir towards water-wet, which is attributed to more homogeneity and better dispersion of surface-treated silica NPs compared to bare-silica NPs.
  4. Issa MA, Zentou H, Jabbar ZH, Abidin ZZ, Harun H, Halim NAA, et al.
    Environ Sci Pollut Res Int, 2022 Dec;29(57):86859-86872.
    PMID: 35802332 DOI: 10.1007/s11356-022-21844-0
    In this study, luminescent bio-adsorbent nitrogen-doped carbon dots (N-CDs) was produced and applied for the removal and detection of Hg (II) from aqueous media. N-CDs were synthesized from oil palm empty fruit bunch carboxymethylcellulose (CMC) and urea. According to several analytical techniques used, the obtained N-CDs display graphitic core with an average size of 4.2 nm, are enriched with active sites, stable over a wide range of pH and have great resistance to photobleaching. The N-CDs have bright blue emission with an improved quantum yield (QY) of up to 35.5%. The effect of the variables including pH, adsorbent mass, initial concentration and incubation time on the removal of Hg (II) was investigated using central composite design. The statistical results confirmed that the adsorption process could reach equilibrium within 30 min. The reduced cubic model (R2 = 0.9989) revealed a good correlation between the observed values and predicted data. The optimal variables were pH of 7, dose of 0.1 g, initial concentration of 100 mg/L and duration of 30 min. Under these conditions, adsorption efficiency of 84.6% was obtained. The adsorption kinetic data could be well expressed by pseudo-second-order kinetic and Langmuir isotherm models. The optimal adsorption capacity was 116.3 mg g-1. Furthermore, the adsorbent has a good selectivity towards Hg (II) with a detection limit of 0.01 μM due to the special interaction between Hg (II) and carboxyl/amino groups on the edge of N-CDs. This work provided an alternative direction for constructing low-cost adsorbents with effective sorption and sensing of Hg (II).
  5. Adil M, Lee K, Mohd Zaid H, A Shukur MF, Manaka T
    PLoS One, 2020;15(12):e0244738.
    PMID: 33382855 DOI: 10.1371/journal.pone.0244738
    Utilization of metal-oxide nanoparticles (NPs) in enhanced oil recovery (EOR) has generated substantial recent research interest in this area. Among these NPs, zinc oxide nanoparticles (ZnO-NPs) have demonstrated promising results in improving oil recovery due to their prominent thermal properties. These nanoparticles can also be polarized by electromagnetic (EM) field, which offers a unique Nano-EOR approach called EM-assisted Nano-EOR. However, the impact of NPs concentrations on oil recovery mechanism under EM field has not been well established. For this purpose, ZnO nanofluids (ZnO-NFs) of two different particle sizes (55.7 and 117.1 nm) were formed by dispersing NPs between 0.01 wt.% to 0.1 wt.% in a basefluid of sodium dodecylbenzenesulfonate (SDBS) and NaCl to study their effect on oil recovery mechanism under the electromagnetic field. This mechanism involved parameters, including mobility ratio, interfacial tension (IFT) and wettability. The displacement tests were conducted in water-wet sandpacks at 95˚C, by employing crude oil from Tapis. Three tertiary recovery scenarios have been performed, including (i) SDBS surfactant flooding as a reference, (ii) ZnO-NFs flooding, and (iii) EM-assisted ZnO-NFs flooding. Compare with incremental oil recovery from surfactant flooding (2.1% original oil in place/OOIP), nanofluid flooding reaches up to 10.2% of OOIP at optimal 0.1 wt.% ZnO (55.7 nm). Meanwhile, EM-assisted nanofluid flooding at 0.1 wt.% ZnO provides a maximum oil recovery of 10.39% and 13.08% of OOIP under EM frequency of 18.8 and 167 MHz, respectively. By assessing the IFT/contact angle and mobility ratio, the optimal NPs concentration to achieve a favorable ER effect and interfacial disturbance is determined, correlated to smaller hydrodynamic-sized nanoparticles that cause strong electrostatic repulsion between particles.
  6. Adil M, Lee K, Mohd Zaid H, Ahmad Latiff NR, Alnarabiji MS
    PLoS One, 2018;13(2):e0193518.
    PMID: 29489897 DOI: 10.1371/journal.pone.0193518
    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265-300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5-10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9-10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid for enhanced oil recovery purposes at a relatively high reservoir temperature.
  7. WHO Solidarity Trial Consortium, Pan H, Peto R, Henao-Restrepo AM, Preziosi MP, Sathiyamoorthy V, et al.
    N Engl J Med, 2021 Feb 11;384(6):497-511.
    PMID: 33264556 DOI: 10.1056/NEJMoa2023184
    BACKGROUND: World Health Organization expert groups recommended mortality trials of four repurposed antiviral drugs - remdesivir, hydroxychloroquine, lopinavir, and interferon beta-1a - in patients hospitalized with coronavirus disease 2019 (Covid-19).

    METHODS: We randomly assigned inpatients with Covid-19 equally between one of the trial drug regimens that was locally available and open control (up to five options, four active and the local standard of care). The intention-to-treat primary analyses examined in-hospital mortality in the four pairwise comparisons of each trial drug and its control (drug available but patient assigned to the same care without that drug). Rate ratios for death were calculated with stratification according to age and status regarding mechanical ventilation at trial entry.

    RESULTS: At 405 hospitals in 30 countries, 11,330 adults underwent randomization; 2750 were assigned to receive remdesivir, 954 to hydroxychloroquine, 1411 to lopinavir (without interferon), 2063 to interferon (including 651 to interferon plus lopinavir), and 4088 to no trial drug. Adherence was 94 to 96% midway through treatment, with 2 to 6% crossover. In total, 1253 deaths were reported (median day of death, day 8; interquartile range, 4 to 14). The Kaplan-Meier 28-day mortality was 11.8% (39.0% if the patient was already receiving ventilation at randomization and 9.5% otherwise). Death occurred in 301 of 2743 patients receiving remdesivir and in 303 of 2708 receiving its control (rate ratio, 0.95; 95% confidence interval [CI], 0.81 to 1.11; P = 0.50), in 104 of 947 patients receiving hydroxychloroquine and in 84 of 906 receiving its control (rate ratio, 1.19; 95% CI, 0.89 to 1.59; P = 0.23), in 148 of 1399 patients receiving lopinavir and in 146 of 1372 receiving its control (rate ratio, 1.00; 95% CI, 0.79 to 1.25; P = 0.97), and in 243 of 2050 patients receiving interferon and in 216 of 2050 receiving its control (rate ratio, 1.16; 95% CI, 0.96 to 1.39; P = 0.11). No drug definitely reduced mortality, overall or in any subgroup, or reduced initiation of ventilation or hospitalization duration.

    CONCLUSIONS: These remdesivir, hydroxychloroquine, lopinavir, and interferon regimens had little or no effect on hospitalized patients with Covid-19, as indicated by overall mortality, initiation of ventilation, and duration of hospital stay. (Funded by the World Health Organization; ISRCTN Registry number, ISRCTN83971151; ClinicalTrials.gov number, NCT04315948.).

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links