Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Abdullateef BN, Elias NF, Mohamed H, Zaidan AA, Zaidan BB
    Springerplus, 2016;5:248.
    PMID: 27064567 DOI: 10.1186/s40064-016-1828-y
    The evaluation and selection of inappropriate open source software in learning management system (OSS-LMS) packages adversely affect the business processes and functions of an organization. Thus, comprehensive insights into the evaluation and selection of OSS-LMS packages are presented in this paper on the basis of three directions. First, available OSS-LMSs are ascertained from published papers. Second, the criteria for evaluating OSS-LMS packages are specified.according to two aspects: the criteria are identified and established, followed by a crossover between them to highlight the gaps between the evaluation criteria for OSS-LMS packages and the selection problems. Third, the abilities of selection methods that appear fit to solve the problems of OSS-LMS packages based on the multi-criteria evaluation and selection problem are discussed to select the best OSS-LMS packages. Results indicate the following: (1) a list of active OSS-LMS packages; (2) the gaps on the evaluation criteria used for LMS and other problems (consisting of main groups with sub-criteria); (3) use of multi-attribute or multi-criteria decision-making (MADM/MCDM) techniques in the framework of the evaluation and selection of the OSS in education as recommended solutions.
  2. Ahmed MA, Zaidan BB, Zaidan AA, Salih MM, Lakulu MMB
    Sensors (Basel), 2018 Jul 09;18(7).
    PMID: 29987266 DOI: 10.3390/s18072208
    Loss of the ability to speak or hear exerts psychological and social impacts on the affected persons due to the lack of proper communication. Multiple and systematic scholarly interventions that vary according to context have been implemented to overcome disability-related difficulties. Sign language recognition (SLR) systems based on sensory gloves are significant innovations that aim to procure data on the shape or movement of the human hand. Innovative technology for this matter is mainly restricted and dispersed. The available trends and gaps should be explored in this research approach to provide valuable insights into technological environments. Thus, a review is conducted to create a coherent taxonomy to describe the latest research divided into four main categories: development, framework, other hand gesture recognition, and reviews and surveys. Then, we conduct analyses of the glove systems for SLR device characteristics, develop a roadmap for technology evolution, discuss its limitations, and provide valuable insights into technological environments. This will help researchers to understand the current options and gaps in this area, thus contributing to this line of research.
  3. Alamoodi AH, Albahri OS, Zaidan AA, Alsattar HA, Zaidan BB, Albahri AS
    Neural Comput Appl, 2023;35(8):6185-6196.
    PMID: 36415285 DOI: 10.1007/s00521-022-07998-5
    This research proposes a novel mobile health-based hospital selection framework for remote patients with multi-chronic diseases based on wearable body medical sensors that use the Internet of Things. The proposed framework uses two powerful multi-criteria decision-making (MCDM) methods, namely fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score method for criteria weighting and hospital ranking. The development of both methods is based on a Q-rung orthopair fuzzy environment to address the uncertainty issues associated with the case study in this research. The other MCDM issues of multiple criteria, various levels of significance and data variation are also addressed. The proposed framework comprises two main phases, namely identification and development. The first phase discusses the telemedicine architecture selected, patient dataset used and decision matrix integrated. The development phase discusses criteria weighting by q-ROFWZIC and hospital ranking by q-ROFDOSM and their sub-associated processes. Weighting results by q-ROFWZIC indicate that the time of arrival criterion is the most significant across all experimental scenarios with (0.1837, 0.183, 0.230, 0.276, 0.335) for (q = 1, 3, 5, 7, 10), respectively. Ranking results indicate that Hospital (H-4) is the best-ranked hospital in all experimental scenarios. Both methods were evaluated based on systematic ranking and sensitivity analysis, thereby confirming the validity of the proposed framework.
  4. Mohsin AH, Zaidan AA, Zaidan BB, Mohammed KI, Albahri OS, Albahri AS, et al.
    Multimed Tools Appl, 2021;80(9):14137-14161.
    PMID: 33519293 DOI: 10.1007/s11042-020-10284-y
    Secure updating and sharing for large amounts of healthcare information (such as medical data on coronavirus disease 2019 [COVID-19]) in efficient and secure transmission are important but challenging in communication channels amongst hospitals. In particular, in addressing the above challenges, two issues are faced, namely, those related to confidentiality and integrity of their health data and to network failure that may cause concerns about data availability. To the authors' knowledge, no study provides secure updating and sharing solution for large amounts of healthcare information in communication channels amongst hospitals. Therefore, this study proposes and discusses a novel steganography-based blockchain method in the spatial domain as a solution. The novelty of the proposed method is the removal and addition of new particles in the particle swarm optimisation (PSO) algorithm. In addition, hash function can hide secret medical COVID-19 data in hospital databases whilst providing confidentiality with high embedding capacity and high image quality. Moreover, stego images with hash data and blockchain technology are used in updating and sharing medical COVID-19 data between hospitals in the network to improve the level of confidentiality and protect the integrity of medical COVID-19 data in grey-scale images, achieve data availability if any connection failure occurs in a single point of the network and eliminate the central point (third party) in the network during transmission. The proposed method is discussed in three stages. Firstly, the pre-hiding stage estimates the embedding capacity of each host image. Secondly, the secret COVID-19 data hiding stage uses PSO algorithm and hash function. Thirdly, the transmission stage transfers the stego images based on blockchain technology and updates all nodes (hospitals) in the network. As proof of concept for the case study, the authors adopted the latest COVID-19 research published in the Computer Methods and Programs in Biomedicine journal, which presents a rescue framework within hospitals for the storage and transfusion of the best convalescent plasma to the most critical patients with COVID-19 on the basis of biological requirements. The validation and evaluation of the proposed method are discussed.
  5. Zaidan BB, Haiqi A, Zaidan AA, Abdulnabi M, Kiah ML, Muzamel H
    J Med Syst, 2015 May;39(5):51.
    PMID: 25732083 DOI: 10.1007/s10916-015-0235-1
    This study focuses on the situation of health information exchange (HIE) in the context of a nationwide network. It aims to create a security framework that can be implemented to ensure the safe transmission of health information across the boundaries of care providers in Malaysia and other countries. First, a critique of the major elements of nationwide health information networks is presented from the perspective of security, along with such topics as the importance of HIE, issues, and main approaches. Second, a systematic evaluation is conducted on the security solutions that can be utilized in the proposed nationwide network. Finally, a secure framework for health information transmission is proposed within a central cloud-based model, which is compatible with the Malaysian telehealth strategy. The outcome of this analysis indicates that a complete security framework for a global structure of HIE is yet to be defined and implemented. Our proposed framework represents such an endeavor and suggests specific techniques to achieve this goal.
  6. Zaidan AA, Zaidan BB, Kadhem Z, Larbani M, Lakulu MB, Hashim M
    J Med Syst, 2015 Feb;39(2):7.
    PMID: 25631841 DOI: 10.1007/s10916-015-0201-y
    This paper discusses the possibility of promoting public health and implementing educational health services using Facebook. We discuss the challenges and strengths of using such a platform as a tool for public health care systems from two different perspectives, namely, the view of IT developers and that of physicians. We present a new way of evaluating user interactivity in health care systems from tools provided by Facebook that measure statistical traffic in the Internet. Findings show that Facebook is a very promising tool in promoting e-health services in Web 2.0. Results from statistical traffic show that a Facebook page is more efficient than other pages in promoting public health.
  7. Alanazi HO, Zaidan AA, Zaidan BB, Kiah ML, Al-Bakri SH
    J Med Syst, 2015 Jan;39(1):165.
    PMID: 25481568 DOI: 10.1007/s10916-014-0165-3
    This study has two objectives. First, it aims to develop a system with a highly secured approach to transmitting electronic medical records (EMRs), and second, it aims to identify entities that transmit private patient information without permission. The NTRU and the Advanced Encryption Standard (AES) cryptosystems are secured encryption methods. The AES is a tested technology that has already been utilized in several systems to secure sensitive data. The United States government has been using AES since June 2003 to protect sensitive and essential information. Meanwhile, NTRU protects sensitive data against attacks through the use of quantum computers, which can break the RSA cryptosystem and elliptic curve cryptography algorithms. A hybrid of AES and NTRU is developed in this work to improve EMR security. The proposed hybrid cryptography technique is implemented to secure the data transmission process of EMRs. The proposed security solution can provide protection for over 40 years and is resistant to quantum computers. Moreover, the technique provides the necessary evidence required by law to identify disclosure or misuse of patient records. The proposed solution can effectively secure EMR transmission and protect patient rights. It also identifies the source responsible for disclosing confidential patient records. The proposed hybrid technique for securing data managed by institutional websites must be improved in the future.
  8. Mat Kiah ML, Al-Bakri SH, Zaidan AA, Zaidan BB, Hussain M
    J Med Syst, 2014 Oct;38(10):133.
    PMID: 25199651 DOI: 10.1007/s10916-014-0133-y
    One of the applications of modern technology in telemedicine is video conferencing. An alternative to traveling to attend a conference or meeting, video conferencing is becoming increasingly popular among hospitals. By using this technology, doctors can help patients who are unable to physically visit hospitals. Video conferencing particularly benefits patients from rural areas, where good doctors are not always available. Telemedicine has proven to be a blessing to patients who have no access to the best treatment. A telemedicine system consists of customized hardware and software at two locations, namely, at the patient's and the doctor's end. In such cases, the video streams of the conferencing parties may contain highly sensitive information. Thus, real-time data security is one of the most important requirements when designing video conferencing systems. This study proposes a secure framework for video conferencing systems and a complete management solution for secure video conferencing groups. Java Media Framework Application Programming Interface classes are used to design and test the proposed secure framework. Real-time Transport Protocol over User Datagram Protocol is used to transmit the encrypted audio and video streams, and RSA and AES algorithms are used to provide the required security services. Results show that the encryption algorithm insignificantly increases the video conferencing computation time.
  9. Kiah ML, Zaidan BB, Zaidan AA, Nabi M, Ibraheem R
    J Med Syst, 2014 Apr;38(4):37.
    PMID: 24700079 DOI: 10.1007/s10916-014-0037-x
    The advancement of information technology has facilitated the automation and feasibility of online information sharing. The second generation of the World Wide Web (Web 2.0) enables the collaboration and sharing of online information through Web-serving applications. Data mashup, which is considered a Web 2.0 platform, plays an important role in information and communication technology applications. However, few ideas have been transformed into education and research domains, particularly in medical informatics. The creation of a friendly environment for medical informatics research requires the removal of certain obstacles in terms of search time, resource credibility, and search result accuracy. This paper considers three glitches that researchers encounter in medical informatics research; these glitches include the quality of papers obtained from scientific search engines (particularly, Web of Science and Science Direct), the quality of articles from the indices of these search engines, and the customizability and flexibility of these search engines. A customizable search engine for trusted resources of medical informatics was developed and implemented through data mashup. Results show that the proposed search engine improves the usability of scientific search engines for medical informatics. Pipe search engine was found to be more efficient than other engines.
  10. Kiah ML, Nabi MS, Zaidan BB, Zaidan AA
    J Med Syst, 2013 Oct;37(5):9971.
    PMID: 24037086 DOI: 10.1007/s10916-013-9971-2
    This study aims to provide security solutions for implementing electronic medical records (EMRs). E-Health organizations could utilize the proposed method and implement recommended solutions in medical/health systems. Majority of the required security features of EMRs were noted. The methods used were tested against each of these security features. In implementing the system, the combination that satisfied all of the security features of EMRs was selected. Secure implementation and management of EMRs facilitate the safeguarding of the confidentiality, integrity, and availability of e-health organization systems. Health practitioners, patients, and visitors can use the information system facilities safely and with confidence anytime and anywhere. After critically reviewing security and data transmission methods, a new hybrid method was proposed to be implemented on EMR systems. This method will enhance the robustness, security, and integration of EMR systems. The hybrid of simple object access protocol/extensible markup language (XML) with advanced encryption standard and secure hash algorithm version 1 has achieved the security requirements of an EMR system with the capability of integrating with other systems through the design of XML messages.
  11. Albahri AS, Hamid RA, Alwan JK, Al-Qays ZT, Zaidan AA, Zaidan BB, et al.
    J Med Syst, 2020 May 25;44(7):122.
    PMID: 32451808 DOI: 10.1007/s10916-020-01582-x
    Coronaviruses (CoVs) are a large family of viruses that are common in many animal species, including camels, cattle, cats and bats. Animal CoVs, such as Middle East respiratory syndrome-CoV, severe acute respiratory syndrome (SARS)-CoV, and the new virus named SARS-CoV-2, rarely infect and spread among humans. On January 30, 2020, the International Health Regulations Emergency Committee of the World Health Organisation declared the outbreak of the resulting disease from this new CoV called 'COVID-19', as a 'public health emergency of international concern'. This global pandemic has affected almost the whole planet and caused the death of more than 315,131 patients as of the date of this article. In this context, publishers, journals and researchers are urged to research different domains and stop the spread of this deadly virus. The increasing interest in developing artificial intelligence (AI) applications has addressed several medical problems. However, such applications remain insufficient given the high potential threat posed by this virus to global public health. This systematic review addresses automated AI applications based on data mining and machine learning (ML) algorithms for detecting and diagnosing COVID-19. We aimed to obtain an overview of this critical virus, address the limitations of utilising data mining and ML algorithms, and provide the health sector with the benefits of this technique. We used five databases, namely, IEEE Xplore, Web of Science, PubMed, ScienceDirect and Scopus and performed three sequences of search queries between 2010 and 2020. Accurate exclusion criteria and selection strategy were applied to screen the obtained 1305 articles. Only eight articles were fully evaluated and included in this review, and this number only emphasised the insufficiency of research in this important area. After analysing all included studies, the results were distributed following the year of publication and the commonly used data mining and ML algorithms. The results found in all papers were discussed to find the gaps in all reviewed papers. Characteristics, such as motivations, challenges, limitations, recommendations, case studies, and features and classes used, were analysed in detail. This study reviewed the state-of-the-art techniques for CoV prediction algorithms based on data mining and ML assessment. The reliability and acceptability of extracted information and datasets from implemented technologies in the literature were considered. Findings showed that researchers must proceed with insights they gain, focus on identifying solutions for CoV problems, and introduce new improvements. The growing emphasis on data mining and ML techniques in medical fields can provide the right environment for change and improvement.
  12. Almahdi EM, Zaidan AA, Zaidan BB, Alsalem MA, Albahri OS, Albahri AS
    J Med Syst, 2019 May 29;43(7):207.
    PMID: 31144129 DOI: 10.1007/s10916-019-1336-z
    This paper presents comprehensive insights into mobile patient monitoring systems (MPMSs) from evaluation and benchmarking aspects on the basis of two critical directions. The current evaluation criteria of MPMSs based on the architectural components of MPMSs and possible solutions are discussed. This review highlights four serious issues, namely, multiple evaluation criteria, criterion importance, unmeasurable criteria and data variation, in MPMS benchmarking. Multicriteria decision-making (MCDM) analysis techniques are proposed as effective solutions to solve these issues from a methodological aspect. This methodological aspect involves a framework for benchmarking MPMSs on the basis of MCDM to rank available MPMSs and select a suitable one. The benchmarking framework is discussed in four steps. Firstly, pre-processing and identification procedures are presented. Secondly, the procedure of weight calculation based on the best-worst method (BWM) is described. Thirdly, the development of a benchmark framework by using the VIKOR method is introduced. Lastly, the proposed framework is validated.
  13. Almahdi EM, Zaidan AA, Zaidan BB, Alsalem MA, Albahri OS, Albahri AS
    J Med Syst, 2019 Jun 06;43(7):219.
    PMID: 31172296 DOI: 10.1007/s10916-019-1339-9
    This study presents a prioritisation framework for mobile patient monitoring systems (MPMSs) based on multicriteria analysis in architectural components. This framework selects the most appropriate system amongst available MPMSs for the telemedicine environment. Prioritisation of MPMSs is a challenging task due to (a) multiple evaluation criteria, (b) importance of criteria, (c) data variation and (d) unmeasurable values. The secondary data presented as the decision evaluation matrix include six systems (namely, Yale-National Aeronautics and Space Administration (NASA), advanced health and disaster aid network, personalised health monitoring, CMS, MobiHealth and NTU) as alternatives and 13 criteria (namely, supported number of sensors, sensor front-end (SFE) communication, SFE to mobile base unit (MBU) communications, display of biosignals on the MBU, storage of biosignals on the MBU, intra-body area network (BAN) communication problems, extra-BAN communication problems, extra-BAN communication technology, extra-BAN communication protocols, back-end system communication technology, intended geographic area of use, end-to-end security and reported trial problems) based on the architectural components of MPMSs. These criteria are adopted from the most relevant studies and are found to be applicable to this study. The prioritisation framework is developed in three stages. (1) The unmeasurable values of the MPMS evaluation criteria in the adopted decision evaluation matrix based on expert opinion are represented by using the best-worst method (BWM). (2) The importance of the evaluation criteria based on the architectural components of the MPMS is determined by using the BWM. (3) The VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method is utilised to rank the MPMSs according to the determined importance of the evaluation criteria and the adopted decision matrix. For validation, mean ± standard deviation is used to verify the similarity of systematic prioritisations objectively. The following results are obtained. (1) The BWM represents the unmeasurable values of the MPMS evaluation criteria. (2) The BWM is suitable for weighing the evaluation criteria based on the architectural components of the MPMS. (3) VIKOR is suitable for solving the MPMS prioritisation problem. Moreover, the internal and external VIKOR group decision making are approximately the same, with the best MPMS being 'Yale-NASA' and the worst MPMS being 'NTU'. (4) For the objective validation, remarkable differences are observed between the group scores, which indicate the similarity of internal and external prioritisation results.
  14. Hussien HM, Yasin SM, Udzir SNI, Zaidan AA, Zaidan BB
    J Med Syst, 2019 Sep 14;43(10):320.
    PMID: 31522262 DOI: 10.1007/s10916-019-1445-8
    Blockchain in healthcare applications requires robust security and privacy mechanism for high-level authentication, interoperability and medical records sharing to comply with the strict legal requirements of the Health Insurance Portability and Accountability Act of 1996. Blockchain technology in the healthcare industry has received considerable research attention in recent years. This study conducts a review to substantially analyse and map the research landscape of current technologies, mainly the use of blockchain in healthcare applications, into a coherent taxonomy. The present study systematically searches all relevant research articles on blockchain in healthcare applications in three accessible databases, namely, ScienceDirect, IEEE and Web of Science, by using the defined keywords 'blockchain', 'healthcare' and 'electronic health records' and their variations. The final set of collected articles related to the use of blockchain in healthcare application is divided into three categories. The first category includes articles (i.e. 43/58 scientific articles) that attempted to develop and design healthcare applications integrating blockchain, particularly those on new architecture, system designs, framework, scheme, model, platform, approach, protocol and algorithm. The second category includes studies (i.e., 6/58 scientific articles) that attempted to evaluate and analyse the adoption of blockchain in the healthcare system. Finally, the third category comprises review and survey articles (i.e., 6/58 scientific articles) related to the integration of blockchain into healthcare applications. The final articles for review are discussed on the basis of five aspects: (1) year of publication, (2) nationality of authors, (3) publishing house or journal, (4) purpose of using blockchain in health applications and the corresponding contributions and (5) problem types and proposed solutions. Additionally, this study provides identified motivations, open challenges and recommendations on the use of blockchain in healthcare applications. The current research contributes to the literature by providing a detailed review of feasible alternatives and identifying the research gaps. Accordingly, researchers and developers are provided with appealing opportunities to further develop decentralised healthcare applications through a comprehensive discussion of about the importance of blockchain and its integration into various healthcare applications.
  15. Shuwandy ML, Zaidan BB, Zaidan AA, Albahri AS
    J Med Syst, 2019 Jan 06;43(2):33.
    PMID: 30612191 DOI: 10.1007/s10916-018-1149-5
    The new and groundbreaking real-time remote healthcare monitoring system on sensor-based mobile health (mHealth) authentication in telemedicine has considerably bounded and dispersed communication components. mHealth, an attractive part in telemedicine architecture, plays an imperative role in patient security and privacy and adapts different sensing technologies through many built-in sensors. This study aims to improve sensor-based defence and attack mechanisms to ensure patient privacy in client side when using mHealth. Thus, a multilayer taxonomy was conducted to attain the goal of this study. Within the first layer, real-time remote monitoring studies based on sensor technology for telemedicine application were reviewed and analysed to examine these technologies and provide researchers with a clear vision of security- and privacy-based sensors in the telemedicine area. An extensive search was conducted to find articles about security and privacy issues, review related applications comprehensively and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were investigated for articles on mHealth in telemedicine-based sensor. A total of 3064 papers were collected from 2007 to 2017. The retrieved articles were filtered according to the security and privacy of sensor-based telemedicine applications. A total of 19 articles were selected and classified into two categories. The first category, 57.89% (n = 11/19), included survey on telemedicine articles and their applications. The second category, 42.1% (n = 8/19), included articles contributed to the three-tiered architecture of telemedicine. The collected studies improved the essential need to add another taxonomy layer and review the sensor-based smartphone authentication studies. This map matching for both taxonomies was developed for this study to investigate sensor field comprehensively and gain access to novel risks and benefits of the mHealth security in telemedicine application. The literature on sensor-based smartphones in the second layer of our taxonomy was analysed and reviewed. A total of 599 papers were collected from 2007 to 2017. In this layer, we obtained a final set of 81 articles classified into three categories. The first category of the articles [86.41% (n = 70/81)], where sensor-based smartphones were examined by utilising orientation sensors for user authentication, was used. The second category [7.40% (n = 6/81)] included attack articles, which were not intensively included in our literature analysis. The third category [8.64% (n = 7/81)] included 'other' articles. Factors were considered to understand fully the various contextual aspects of the field in published studies. The characteristics included the motivation and challenges related to sensor-based authentication of smartphones encountered by researchers and the recommendations to strengthen this critical area of research. Finally, many studies on the sensor-based smartphone in the second layer have focused on enhancing accurate authentication because sensor-based smartphones require sensors that could authentically secure mHealth.
  16. Talal M, Zaidan AA, Zaidan BB, Albahri AS, Alamoodi AH, Albahri OS, et al.
    J Med Syst, 2019 Jan 15;43(3):42.
    PMID: 30648217 DOI: 10.1007/s10916-019-1158-z
    The Internet of Things (IoT) has been identified in various applications across different domains, such as in the healthcare sector. IoT has also been recognised for its revolution in reshaping modern healthcare with aspiring wide range prospects, including economical, technological and social. This study aims to establish IoT-based smart home security solutions for real-time health monitoring technologies in telemedicine architecture. A multilayer taxonomy is driven and conducted in this study. In the first layer, a comprehensive analysis on telemedicine, which focuses on the client and server sides, shows that other studies associated with IoT-based smart home applications have several limitations that remain unaddressed. Particularly, remote patient monitoring in healthcare applications presents various facilities and benefits by adopting IoT-based smart home technologies without compromising the security requirements and potentially large number of risks. An extensive search is conducted to identify articles that handle these issues, related applications are comprehensively reviewed and a coherent taxonomy for these articles is established. A total number of (n = 3064) are gathered between 2007 and 2017 for most reliable databases, such as ScienceDirect, Web of Science and Institute of Electrical and Electronic Engineer Xplore databases. Then, the articles based on IoT studies that are associated with telemedicine applications are filtered. Nine articles are selected and classified into two categories. The first category, which accounts for 22.22% (n = 2/9), includes surveys on telemedicine articles and their applications. The second category, which accounts for 77.78% (n = 7/9), includes articles on the client and server sides of telemedicine architecture. The collected studies reveal the essential requirement in constructing another taxonomy layer and review IoT-based smart home security studies. Therefore, IoT-based smart home security features are introduced and analysed in the second layer. The security of smart home design based on IoT applications is an aspect that represents a crucial matter for general occupants of smart homes, in which studies are required to provide a better solution with patient security, privacy protection and security of users' entities from being stolen or compromised. Innovative technologies have dispersed limitations related to this matter. The existing gaps and trends in this area should be investigated to provide valuable visions for technical environments and researchers. Thus, 67 articles are obtained in the second layer of our taxonomy and are classified into six categories. In the first category, 25.37% (n = 17/67) of the articles focus on architecture design. In the second category, 17.91% (n = 12/67) includes security analysis articles that investigate the research status in the security area of IoT-based smart home applications. In the third category, 10.44% (n = 7/67) includes articles about security schemes. In the fourth category, 17.91% (n = 12/67) comprises security examination. In the fifth category, 13.43% (n = 9/67) analyses security protocols. In the final category, 14.92% (n = 10/67) analyses the security framework. Then, the identified basic characteristics of this emerging field are presented and provided in the following aspects. Open challenges experienced on the development of IoT-based smart home security are addressed to be adopted fully in telemedicine applications. Then, the requirements are provided to increase researcher's interest in this study area. On this basis, a number of recommendations for different parties are described to provide insights on the next steps that should be considered to enhance the security of smart homes based on IoT. A map matching for both taxonomies is developed in this study to determine the novel risks and benefits of IoT-based smart home security for real-time remote health monitoring within client and server sides in telemedicine applications.
  17. Hamada M, Zaidan BB, Zaidan AA
    J Med Syst, 2018 Jul 24;42(9):162.
    PMID: 30043178 DOI: 10.1007/s10916-018-1020-8
    The study of electroencephalography (EEG) signals is not a new topic. However, the analysis of human emotions upon exposure to music considered as important direction. Although distributed in various academic databases, research on this concept is limited. To extend research in this area, the researchers explored and analysed the academic articles published within the mentioned scope. Thus, in this paper a systematic review is carried out to map and draw the research scenery for EEG human emotion into a taxonomy. Systematically searched all articles about the, EEG human emotion based music in three main databases: ScienceDirect, Web of Science and IEEE Xplore from 1999 to 2016. These databases feature academic studies that used EEG to measure brain signals, with a focus on the effects of music on human emotions. The screening and filtering of articles were performed in three iterations. In the first iteration, duplicate articles were excluded. In the second iteration, the articles were filtered according to their titles and abstracts, and articles outside of the scope of our domain were excluded. In the third iteration, the articles were filtered by reading the full text and excluding articles outside of the scope of our domain and which do not meet our criteria. Based on inclusion and exclusion criteria, 100 articles were selected and separated into five classes. The first class includes 39 articles (39%) consists of emotion, wherein various emotions are classified using artificial intelligence (AI). The second class includes 21 articles (21%) is composed of studies that use EEG techniques. This class is named 'brain condition'. The third class includes eight articles (8%) is related to feature extraction, which is a step before emotion classification. That this process makes use of classifiers should be noted. However, these articles are not listed under the first class because these eight articles focus on feature extraction rather than classifier accuracy. The fourth class includes 26 articles (26%) comprises studies that compare between or among two or more groups to identify and discover human emotion-based EEG. The final class includes six articles (6%) represents articles that study music as a stimulus and its impact on brain signals. Then, discussed the five main categories which are action types, age of the participants, and number size of the participants, duration of recording and listening to music and lastly countries or authors' nationality that published these previous studies. it afterward recognizes the main characteristics of this promising area of science in: motivation of using EEG process for measuring human brain signals, open challenges obstructing employment and recommendations to improve the utilization of EEG process.
  18. Albahri OS, Zaidan AA, Zaidan BB, Hashim M, Albahri AS, Alsalem MA
    J Med Syst, 2018 Jul 25;42(9):164.
    PMID: 30043085 DOI: 10.1007/s10916-018-1006-6
    Promoting patient care is a priority for all healthcare providers with the overall purpose of realising a high degree of patient satisfaction. A medical centre server is a remote computer that enables hospitals and physicians to analyse data in real time and offer appropriate services to patients. The server can also manage, organise and support professionals in telemedicine. Therefore, a remote medical centre server plays a crucial role in sustainably delivering quality healthcare services in telemedicine. This article presents a comprehensive review of the provision of healthcare services in telemedicine applications, especially in the medical centre server. Moreover, it highlights the open issues and challenges related to providing healthcare services in the medical centre server within telemedicine. Methodological aspects to control and manage the process of healthcare service provision and three distinct and successive phases are presented. The first phase presents the identification process to propose a decision matrix (DM) on the basis of a crossover of 'multi-healthcare services' and 'hospital list' within intelligent data and service management centre (Tier 4). The second phase discusses the development of a DM for hospital selection on the basis of integrated VIKOR-Analytic Hierarchy Process (AHP) methods. Finally, the last phase examines the validation process for the proposed framework.
  19. Albahri AS, Zaidan AA, Albahri OS, Zaidan BB, Alsalem MA
    J Med Syst, 2018 Jun 23;42(8):137.
    PMID: 29936593 DOI: 10.1007/s10916-018-0983-9
    The burden on healthcare services in the world has increased substantially in the past decades. The quality and quantity of care have to increase to meet surging demands, especially among patients with chronic heart diseases. The expansion of information and communication technologies has led to new models for the delivery healthcare services in telemedicine. Therefore, mHealth plays an imperative role in the sustainable delivery of healthcare services in telemedicine. This paper presents a comprehensive review of healthcare service provision. It highlights the open issues and challenges related to the use of the real-time fault-tolerant mHealth system in telemedicine. The methodological aspects of mHealth are examined, and three distinct and successive phases are presented. The first discusses the identification process for establishing a decision matrix based on a crossover of 'time of arrival of patient at the hospital/multi-services' and 'hospitals' within mHealth. The second phase discusses the development of a decision matrix for hospital selection based on the MAHP method. The third phase discusses the validation of the proposed system.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links