Displaying all 9 publications

Abstract:
Sort:
  1. Khan IA, Ahmad M, Ashfaq UA, Sultan S, Zaki MEA
    Molecules, 2021 Aug 06;26(16).
    PMID: 34443347 DOI: 10.3390/molecules26164760
    α-Glucosidase inhibitors (AGIs) are used as medicines for the treatment of diabetes mellitus. The α-Glucosidase enzyme is present in the small intestine and is responsible for the breakdown of carbohydrates into sugars. The process results in an increase in blood sugar levels. AGIs slow down the digestion of carbohydrates that is helpful in controlling the sugar levels in the blood after meals. Among heterocyclic compounds, benzimidazole moiety is recognized as a potent bioactive scaffold for its wide range of biologically active derivatives. The aim of this study is to explore the α-glucosidase inhibition ability of benzimidazolium salts. In this study, two novel series of benzimidazolium salts, i.e., 1-benzyl-3-{2-(substituted) amino-2-oxoethyl}-1H-benzo[d]imidazol-3-ium bromide 9a-m and 1-benzyl-3-{2-substituted) amino-2-oxoethyl}-2-methyl-1H-benzo[d] imidazol-3-ium bromide 10a-m were screened for their in vitro α-glucosidase inhibitory potential. These compounds were synthesized through a multistep procedure and were characterized by 1H-NMR, 13C-NMR, and EI-MS techniques. Compound 10d was identified as the potent α-glucosidase inhibitor among the series with an IC50 value of 14 ± 0.013 μM, which is 4-fold higher than the standard drug, acarbose. In addition, compounds 10a, 10e, 10h, 10g, 10k, 10l, and 10m also exhibited pronounced potential for α-glucosidase inhibition with IC50 value ranging from 15 ± 0.037 to 32.27 ± 0.050 µM when compared with the reference drug acarbose (IC50 = 58.8 ± 0.12 μM). A molecular docking study was performed to rationalize the binding interactions of potent inhibitors with the active site of the α-glucosidase enzyme.
  2. Saddique FA, Aslam S, Ahmad M, Ashfaq UA, Muddassar M, Sultan S, et al.
    Molecules, 2021 May 20;26(10).
    PMID: 34065194 DOI: 10.3390/molecules26103043
    Diabetes mellitus (DM) is a chronic disorder and has affected a large number of people worldwide. Insufficient insulin production causes an increase in blood glucose level that results in DM. To lower the blood glucose level, various drugs are employed that block the activity of the α-glucosidase enzyme, which is considered responsible for the breakdown of polysaccharides into monosaccharides leading to an increase in the intestinal blood glucose level. We have synthesized novel 2-(3-(benzoyl/4-bromobenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)-N-arylacetamides and have screened them for their in silico and in vitro α-glucosidase inhibition activity. The derivatives 11c, 12a, 12d, 12e, and 12g emerged as potent inhibitors of the α-glucosidase enzyme. These compounds exhibited good docking scores and excellent binding interactions with the selected residues (Asp203, Asp542, Asp327, His600, Arg526) during in silico screening. Similarly, these compounds also showed good in vitro α-glucosidase inhibitions with IC50 values of 30.65, 18.25, 20.76, 35.14, and 24.24 μM, respectively, which were better than the standard drug, acarbose (IC50 = 58.8 μM). Furthermore, a good agreement was observed between in silico and in vitro modes of study.
  3. Irshad MA, Sattar S, Nawaz R, Al-Hussain SA, Rizwan M, Bukhari A, et al.
    Ecotoxicol Environ Saf, 2023 Sep 15;263:115231.
    PMID: 37429088 DOI: 10.1016/j.ecoenv.2023.115231
    Water contamination can be detrimental to the human health due to higher concentration of carcinogenic heavy metals such as chromium (Cr) in the wastewater. Many traditional methods are being employed in wastewater treatment plants for Cr removal to control the environmental impacts. Such methods include ion exchange, coagulation, membrane filtration, and chemical precipitation and microbial degradation. Recent advances in materials science and green chemistry have led to the development of nanomaterial that possess high specific surface areas and multiple functions, making them suitable for removing metals such as Cr from wastewater. Literature shows that the most efficient, effective, clean, and long-lasting approach for removing heavy metals from wastewater involves adsorbing heavy metals onto the surface of nanomaterial. This review assesses the removal methods of Cr from wastewater, advantages and disadvantages of using nanomaterial to remove Cr from wastewater and potential negative impacts on human health. The latest trends and developments in Cr removal strategies using nanomaterial adsorption are also explored in the present review.
  4. Masand VH, Al-Hussain S, Alzahrani AY, El-Sayed NNE, Yeo CI, Tan YS, et al.
    Expert Opin Drug Discov, 2024;19(1):111-124.
    PMID: 37811790 DOI: 10.1080/17460441.2023.2266990
    BACKGROUND: The process of drug development and discovery is costly and slow. Although an understanding of molecular design principles and biochemical processes has progressed, it is essential to minimize synthesis-testing cycles. An effective approach is to analyze key heteroatoms, including oxygen and nitrogen. Herein, we present an analysis focusing on the utilization of nitrogen atoms in approved drugs.

    RESEARCH DESIGN AND METHODS: The present work examines the frequency, distribution, prevalence, and diversity of nitrogen atoms in a dataset comprising 2,049 small molecules approved by different regulatory agencies (FDA and others). Various types of nitrogen atoms, such as sp3-, sp2-, sp-hybridized, planar, ring, and non-ring are included in this investigation.

    RESULTS: The results unveil both previously reported and newly discovered patterns of nitrogen atom distribution around the center of mass in the majority of drug molecules.

    CONCLUSIONS: This study has highlighted intriguing trends in the role of nitrogen atoms in drug design and development. The majority of drugs contain 1-3 nitrogen atoms within 5Å from the center of mass (COM) of a molecule, with a higher preference for the ring and planar nitrogen atoms. The results offer invaluable guidance for the multiparameter optimization process, thus significantly contributing toward the conversion of lead compounds into potential drug candidates.

  5. Irshad MA, Abdullah, Latif M, Nasim I, Nawaz R, Zahoor AF, et al.
    Ecotoxicol Environ Saf, 2024 Aug;281:116616.
    PMID: 38917589 DOI: 10.1016/j.ecoenv.2024.116616
    The urgent need to address the severe environmental risk posed by chromium-contaminated industrial wastewater necessitates the development of eco-friendly cleanup methodologies. Utilizing the Ficus benghalensis plant extracts, the present study aims to develop green zinc oxide nanoparticles for the removal of Cr metal ions from wastewater. The leaves of Ficus benghalensis, often known as the banyan tree, were used to extract a solution for synthesizing ZnO NPs. These nanoparticles were developed with the goal of efficiently eliminating chromium (Cr) from industrial effluents. Batch studies were carried out to assess the efficiency of these synthesized ZnO NPs in treating leather industrial effluent, with aiming for optimal chromium removal. This involved measuring the nanoparticles' capacity to adsorb Cr ions from wastewater samples by comparing chromium levels before and after treatment. Removal efficiency for Cr was estimated through the batches such as optimization of pH, contact time, initial Cr concentration and sorbent dose of ZnO NPs were of the batches. These synthesized ZnO NPs were found to be successful in lowering chromium levels in wastewater to meet permissible limit. The nanoparticles exhibited their highest absorption capacity, reaching 94 % (46 mg/g) at pH 4, with a contact time of 7 hours with the optimum sorbent dose of 0.6 g/L. Hence, the excellent adsorption capabilities of these nanoparticles, together with their environmentally benign manufacturing technique, provide a long-term and efficient solution for chromium-contaminated wastewater treatment. Its novel nature has the potential to significantly improve the safety and cleanliness of water ecosystems, protecting the both i.e. human health and the environment.
  6. Jawarkar RD, Zaki MEA, Al-Hussain SA, Al-Mutairi AA, Samad A, Mukerjee N, et al.
    J Biomol Struct Dyn, 2024 Mar;42(5):2550-2569.
    PMID: 37144753 DOI: 10.1080/07391102.2023.2205948
    Due to the high rates of drug development failure and the massive expenses associated with drug discovery, repurposing existing drugs has become more popular. As a result, we have used QSAR modelling on a large and varied dataset of 657 compounds in an effort to discover both explicit and subtle structural features requisite for ACE2 inhibitory activity, with the goal of identifying novel hit molecules. The QSAR modelling yielded a statistically robust QSAR model with high predictivity (R2tr=0.84, R2ex=0.79), previously undisclosed features, and novel mechanistic interpretations. The developed QSAR model predicted the ACE2 inhibitory activity (PIC50) of 1615 ZINC FDA compounds. This led to the detection of a PIC50 of 8.604 M for the hit molecule (ZINC000027990463). The hit molecule's docking score is -9.67 kcal/mol (RMSD 1.4). The hit molecule revealed 25 interactions with the residue ASP40, which defines the N and C termini of the ectodomain of ACE2. The HIT molecule conducted more than thirty contacts with water molecules and exhibited polar interaction with the ARG522 residue coupled with the second chloride ion, which is 10.4 nm away from the zinc ion. Both molecular docking and QSAR produced comparable findings. Moreover, MD simulation and MMGBSA studies verified docking analysis. The MD simulation showed that the hit molecule-ACE2 receptor complex is stable for 400 ns, suggesting that repurposed hit molecule 3 is a viable ACE2 inhibitor.
  7. Akash M, Rana N, Aslam S, Ahmad M, Saif MJ, Asghar A, et al.
    Front Chem, 2024;12:1423385.
    PMID: 39165334 DOI: 10.3389/fchem.2024.1423385
    The urease enzyme is recognized as a valuable therapeutic agent for treating the virulent Helicobacter pylori bacterium because of its pivotal role in aiding the colonization and growth of the bacterium within the gastric mucosa. In order to control the harmful consequences of bacterial infections, urease inhibition presents itself as a promising and effective approach. The current research aimed to synthesize pyridylpiperazine-based carbodithioate derivatives 5a-5n and 7a-7n that could serve as potential drug candidates for preventing bacterial infections through urease inhibition. The synthesized carbodithioate derivatives 5a-5n and 7a-7n were explored to assess their ability to inhibit the urease enzyme after their structural explication by gas chromatography-mass spectrometry (GC-MS). In the in vitro evaluation with thiourea as a standard drug, it was observed that all the synthesized compounds exhibited significant inhibitory activity compared to the reference drug. Among the compounds tested, 5j (bearing an o-tolyl moiety) emerged as the most effective inhibitor, displaying strong urease inhibition with an IC50 value of 5.16 ± 2.68 μM. This IC50 value is notably lower than that of thiourea (23 ± 0.03 μM), indicating the significantly most potent potential of inhibition. In molecular docking of 5j within the active site of urease, numerous noteworthy interactions were identified.
  8. Masand VH, Al-Hussain S, Alzahrani AY, Al-Mutairi AA, Sultan Alqahtani A, Samad A, et al.
    Expert Opin Drug Discov, 2024 Aug;19(8):991-1009.
    PMID: 38898679 DOI: 10.1080/17460441.2024.2368743
    BACKGROUND: Despite the progress in comprehending molecular design principles and biochemical processes associated with thrombin inhibition, there is a crucial need to optimize efforts and curtail the recurrence of synthesis-testing cycles. Nitrogen and N-heterocycles are key features of many anti-thrombin drugs. Hence, a pragmatic analysis of nitrogen and N-heterocycles in thrombin inhibitors is important throughout the drug discovery pipeline. In the present work, the authors present an analysis with a specific focus on understanding the occurrence and distribution of nitrogen and selected N-heterocycles in the realm of thrombin inhibitors.

    RESEARCH DESIGN AND METHODS: A dataset comprising 4359 thrombin inhibitors is used to scrutinize various categories of nitrogen atoms such as ring, non-ring, aromatic, and non-aromatic. In addition, selected aromatic and aliphatic N-heterocycles have been analyzed.

    RESULTS: The analysis indicates that ~62% of thrombin inhibitors possess five or fewer nitrogen atoms. Substituted N-heterocycles have a high occurrence, like pyrrolidine (23.24%), pyridine (20.56%), piperidine (16.10%), thiazole (9.61%), imidazole (7.36%), etc. in thrombin inhibitors.

    CONCLUSIONS: The majority of active thrombin inhibitors contain nitrogen atoms close to 5 and a combination of N-heterocycles like pyrrolidine, pyridine, piperidine, etc. This analysis provides crucial insights to optimize the transformation of lead compounds into potential anti-thrombin inhibitors.

  9. Mohamed EAR, Abdel-Rahman IM, Zaki MEA, Al-Khdhairawi A, Abdelhamid MM, Alqaisi AM, et al.
    J Mol Model, 2023 Feb 20;29(3):70.
    PMID: 36808314 DOI: 10.1007/s00894-023-05457-z
    BACKGROUND: In November 2021, variant B.1.1.529 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified by the World Health Organization (WHO) and designated Omicron. Omicron is characterized by a high number of mutations, thirty-two in total, making it more transmissible than the original virus. More than half of those mutations were found in the receptor-binding domain (RBD) that directly interacts with human angiotensin-converting enzyme 2 (ACE2). This study aimed to discover potent drugs against Omicron, which were previously repurposed for coronavirus disease 2019 (COVID-19). All repurposed anti-COVID-19 drugs were compiled from previous studies and tested against the RBD of SARS-CoV-2 Omicron.

    METHODS: As a preliminary step, a molecular docking study was performed to investigate the potency of seventy-one compounds from four classes of inhibitors. The molecular characteristics of the best-performing five compounds were predicted by estimating the drug-likeness and drug score. Molecular dynamics simulations (MD) over 100 ns were performed to inspect the relative stability of the best compound within the Omicron receptor-binding site.

    RESULTS: The current findings point out the crucial roles of Q493R, G496S, Q498R, N501Y, and Y505H in the RBD region of SARS-CoV-2 Omicron. Raltegravir, hesperidin, pyronaridine, and difloxacin achieved the highest drug scores compared with the other compounds in the four classes, with values of 81%, 57%, 18%, and 71%, respectively. The calculated results showed that raltegravir and hesperidin had high binding affinities and stabilities to Omicron with ΔGbinding of - 75.7304 ± 0.98324 and - 42.693536 ± 0.979056 kJ/mol, respectively. Further clinical studies should be performed for the two best compounds from this study.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links