Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. van der Ent A, Edraki M
    Environ Geochem Health, 2018 Feb;40(1):189-207.
    PMID: 27848090 DOI: 10.1007/s10653-016-9892-3
    The Mamut Copper Mine (MCM) located in Sabah (Malaysia) on Borneo Island was the only Cu-Au mine that operated in the country. During its operation (1975-1999), the mine produced 2.47 Mt of concentrate containing approximately 600,000 t of Cu, 45 t of Au and 294 t of Ag, and generated about 250 Mt of overburden and waste rocks and over 150 Mt of tailings, which were deposited at the 397 ha Lohan tailings storage facility, 15.8 km from the mine and 980 m lower in altitude. The MCM site presents challenges for environmental rehabilitation due to the presence of large volumes of sulphidic minerals wastes, the very high rainfall and the large volume of polluted mine pit water. This indicates that rehabilitation and treatment is costly, as for example, exceedingly large quantities of lime are needed for neutralisation of the acidic mine pit discharge. The MCM site has several unusual geochemical features on account of the concomitant occurrence of acid-forming sulphide porphyry rocks and alkaline serpentinite minerals, and unique biological features because of the very high plant diversity in its immediate surroundings. The site hence provides a valuable opportunity for researching natural acid neutralisation processes and mine rehabilitation in tropical areas. Today, the MCM site is surrounded by protected nature reserves (Kinabalu Park, a World Heritage Site, and Bukit Hampuan, a Class I Forest Reserve), and the environmental legacy prevents de-gazetting and inclusion in these protected area in the foreseeable future. This article presents a preliminary geochemical investigation of waste rocks, sediments, secondary precipitates, surface water chemistry and foliar elemental uptake in ferns, and discusses these results in light of their environmental significance for rehabilitation.
  2. Zarcinas BA, Ishak CF, McLaughlin MJ, Cozens G
    Environ Geochem Health, 2004 Dec;26(4):343-57.
    PMID: 15719158
    In a reconnaisance soil geochemical and plant survey undertaken to study the heavy metal uptake by major food crops in Malaysia, 241 soils were analysed for cation exchange capacity (CEC), organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) using appropriate procedures. These soils were also analysed for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) using aqua regia digestion, together with 180 plant samples using nitric acid digestion. Regression analysis between the edible plant part and aqua regia soluble soil As, Cd, Cr, Cu, Hg, Ni, Pb and Zn concentrations sampled throughout Peninsular Malaysia, indicated a positive relationship for Pb in all the plants sampled in the survey (R2 = 0.195, p < 0.001), for Ni in corn (R2 = 0.649, p < 0.005), for Cu in chili (R2 = 0.344, p < 0.010) and for Zn in chili (R2 = 0.501, p < 0.001). Principal component analysis of the soil data suggested that concentrations of Co, Ni, Pb and Zn were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. Chromium was correlated with soil pH and EC, Na, S, and Ca while Hg was not correlated with any of these components, suggesting diffuse pollution by aerial deposition. However As, Cd, Cu were strongly associated with organic matter and available and aqua regia soluble soil P, which we attribute to inputs in agricultural fertilisers and soil organic amendments (e.g. manures, composts).
  3. Zango ZU, Khoo KS, Garba A, Lawal MA, Abidin AZ, Wadi IA, et al.
    Environ Geochem Health, 2024 Apr 03;46(4):145.
    PMID: 38568460 DOI: 10.1007/s10653-024-01936-1
    Frequent detection of sulfonamides (SAs) pharmaceuticals in wastewater has necessitated the discovery of suitable technology for their sustainable remediation. Adsorption has been widely investigated due to its effectiveness, simplicity, and availability of various adsorbent materials from natural and artificial sources. This review highlighted the potentials of carbon-based adsorbents derived from agricultural wastes such as lignocellulose, biochar, activated carbon, carbon nanotubes graphene materials as well as organic polymers such as chitosan, molecularly imprinted polymers, metal, and covalent frameworks for SAs removal from wastewater. The promising features of these materials including higher porosity, rich carbon-content, robustness, good stability as well as ease of modification have been emphasized. Thus, the materials have demonstrated excellent performance towards the SAs removal, attributed to their porous nature that provided sufficient active sites for the adsorption of SAs molecules. The modification of physico-chemical features of the materials have been discussed as efficient means for enhancing their adsorption and reusable performance. The article also proposed various interactive mechanisms for the SAs adsorption. Lastly, the prospects and challenges have been highlighted to expand the knowledge gap on the application of the materials for the sustainable removal of the SAs.
  4. Zaki MRM, Ying PX, Zainuddin AH, Razak MR, Aris AZ
    Environ Geochem Health, 2021 Sep;43(9):3733-3748.
    PMID: 33712970 DOI: 10.1007/s10653-021-00872-8
    Microplastics have been considered as contaminants of emerging concern due to ubiquity in the environment; however, the occurrence of microplastics in river estuaries is scarcely investigated. The Klang River estuary is an important ecosystem that receives various contaminants from urbanised, highly populated areas and the busiest maritime centre in Selangor, Malaysia. This study investigates the abundance and characteristics of microplastics in surface water of the Klang River estuary. The abundance of microplastics ranged from 0.5 to 4.5 particles L-1 with a mean abundance of 2.47 particles L-1. There is no correlation between the abundance of microplastics and physicochemical properties, while there is a strong correlation between salinity and conductivity. The microplastics were characterised with a stereomicroscope and attenuated total reflection-Fourier transform infrared spectroscopy to analyse size, shape, colour, and polymer composition. The microplastics in the surface water were predominantly in the 300-1000 μm size class, followed by > 1000 μm and 
  5. Zainuddin AH, Wee SY, Aris AZ
    Environ Geochem Health, 2020 Nov;42(11):3703-3715.
    PMID: 32488800 DOI: 10.1007/s10653-020-00604-4
    The application of organophosphorus pesticides (OPPs) increased gradually because of the rise in global food demand that triggered the agriculture sector to increase the production, leading to OPP residues in the surface water. This study elucidated the presence of OPPs and estimated its ecological risk in the riverine ecosystem of the urbanised Linggi River, Negeri Sembilan, Malaysia. The OPP concentration in surface water was determined using solid-phase extraction method and high-performance liquid chromatography coupled with diode array detection. Further, the ecological risk was estimated by using the risk quotient (RQ) method. The three OPPs, i.e. chlorpyrifos, diazinon, and quinalphos were detected with mean concentrations of 0.0275 µg/L, 0.0328 µg/L, and 0.0362 µg/L, respectively. The OPPs were at high risk (in general and worst cases) under acute exposure. The estimated risk of diazinon was observed as medium for general (RQm = 0.5857) and high for worst cases (RQex = 4.4678). Notably, the estimated risk for chlorpyrifos was high for both general and worst cases (RQm = 1.9643 and RQex = 11.5643) towards the aquatic ecosystem of the Linggi River. Chronic risk of quinalphos remains unknown because of the absence of toxicity endpoints. This study presented clear knowledge regarding OPP contamination and possible risk for aquatic ecosystems. Hence, OPPs should be listed as one of the main priority contaminants in pesticide mitigation management in the future.
  6. Wee SY, Haron DEM, Aris AZ, Yusoff FM, Praveena SM
    Environ Geochem Health, 2020 Oct;42(10):3247-3261.
    PMID: 32328897 DOI: 10.1007/s10653-020-00565-8
    Active pharmaceutical ingredients (APIs) are typical endocrine disruptors found in common pharmaceuticals and personal care products, which are frequently detected in aquatic environments, especially surface water treated for drinking. However, current treatment technologies are inefficient for removing emerging endocrine disruptors, leading to the potential contamination of tap water. This study employed an optimized analytical method comprising solid-phase extraction and liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) to detect APIs in tap water in Putrajaya, Malaysia. Several therapeutic classes of pharmaceuticals and personal care products, including anti-inflammatory drugs (dexamethasone and diclofenac), antibiotics (sulfamethoxazole and triclosan), antiepileptics (primidone), antibacterial agents (ciprofloxacin), beta-blockers (propranolol), psychoactive stimulants (caffeine), and antiparasitic drugs (diazinon), were detected in the range of 
  7. Vasudevan U, Gantayat RR, Chidambaram S, Prasanna MV, Venkatramanan S, Devaraj N, et al.
    Environ Geochem Health, 2021 Feb;43(2):1069-1088.
    PMID: 32940833 DOI: 10.1007/s10653-020-00712-1
    Microbes in groundwater play a key role in determining the drinking water quality of the water. The study aims to interpret the sources of microbes in groundwater and its relationship to geochemistry. The study was carried out by collecting groundwater samples and analyzed to obtain various cations and anions, where HCO3-, Cl- and NO3- found to be higher than permissible limits in few samples. Microbial analysis, like total coliform (TC), total viable counts (TVC), fecal coliforms (FC), Vibrio cholera (V. cholerae) and total Streptococci (T. streptococci) were analyzed, and the observations reveal that most of the samples were found to be above the permissible limits adopted by EU, BIS, WHO and USEPA standards. Correlation analysis shows good correlation between Mg2+-HCO3-, K+-NO3-, TVC- V. cholerae and T. streptococci-FC. Major ions like Mg+, K+, NO3, Ca2+ and PO4 along with TS and FC were identified to control the geochemical and microbial activities in the region. The magnesium hardness in the groundwater is inferred to influence the TVC and V. cholerae. The mixing of effluents from different sources reflected the association of Cl with TC. Population of microbes T. streptococci and FC was mainly associated with Ca and Cl content in groundwater, depicting the role of electron acceptors and donors. The sources of the microbial population were observed with respect to the land use pattern and the spatial distribution of hydrogeochemical factors in the region. The study inferred that highest microbial activity in the observed in the residential areas, cultivated regions and around the landfill sites due to the leaching of sewage water and fertilizers runoff into groundwater. The concentrations of ions and microbes were found to be above the permissible limits of drinking water quality standards. This may lead to the deterioration in the health of particular coastal region.
  8. Vasu D, Navaneetha Pandiyaraj K, Padmanabhan PVA, Pichumani M, Deshmukh RR, Jaganathan SK
    Environ Geochem Health, 2021 Feb;43(2):649-662.
    PMID: 31679080 DOI: 10.1007/s10653-019-00446-9
    One of the major environmental issues of textile industries is the discharge of large quantities of textile effluents, which are source of contamination of water bodies on surface of earth and quality of groundwater. The effluents are toxic, non-biodegradable, carcinogenic and prodigious threats to human and aquatic creatures. Since textile effluents can be treated efficiently and effectively by various advanced oxidation processes (AOPs). Among the various AOPs, cold atmospheric pressure plasma is a promising method among many prominent techniques available to treat the effluents. In this paper, we report about the degradation of simulated effluent, namely Direct Orange-S (DO-S) aqueous solution, using nonthermal atmospheric pressure plasma jet. The plasma treatment of DO-S aqueous solution was carried out as a function of various operating parameters such as potential and treatment time. The change in properties of treated DO-S dye was investigated by means of various analytical techniques such as high-performance liquid chromatography, UV-visible (UV-Vis) spectroscopy and determination of total organic content (TOC). The reactive species present in the samples were identified using optical emission spectrometry (OES). OES results confirmed that the formation of reactive oxygen and nitrogen species during the plasma treatment in the liquid surface was responsible for dye oxidation and degradation. Degradation efficiency, as monitored by color removal efficiency, of 96% could be achieved after 1 h of treatment. Concurrently, the TOC values were found to decrease with plasma treatment, implying that the plasma treatment process enhanced the non-toxicity nature of DO-S aqueous solution. Toxicity of the untreated and plasma-treated dye solution samples was studied using Escherichia coli (E. coli) and Staphylococcus (S. aureus) organisms, which demonstrated that the plasma-treated dye solution was non-toxic in nature compared with untreated one.
  9. Usman UA, Yusoff I, Raoov M, Hodgkinson J
    Environ Geochem Health, 2020 Oct;42(10):3079-3099.
    PMID: 32180058 DOI: 10.1007/s10653-020-00543-0
    The research study was carried out to evaluate trace metals (Pb, Cd, Se, Al, Mn, Cu, Zn, Fe, As, Ni, Cr, and Ag) concentrations in groundwater of Lorong Serai 4, Hulu Langat, Selangor, Malaysia. Additionally, the research study focused on determining non-carcinogenic and carcinogenic health risks, sources of the contaminants, and effective remediation methods. The results show that the concentration levels of Pb, Cd, Se, Al, Cu, Zn, Ni, Cr, and Ag are lower than their corresponding permissible limits, while Fe, Mn, and As concentrations exceed their acceptable limit. The hazard index of the groundwater in the area exceeded the acceptable limit, showing the rate of carcinogenic and non-carcinogenic health effects associated with the water. The findings also indicate that the lifetime cancer risk is high compared to the maximum limits of lifetime cancer risk from the drinking water (10-6 to 10-4). The groundwater geochemical data of the area are used in establishing the source of Fe, Mn, and As metal ions. Evaluation of Fe2+/Fe3+ and S2-/SO42- redox couples and thermodynamic modelling indicates that the groundwater of the area is in redox disequilibrium. The groundwater samples contain aqueous iron sulphate, which is supersaturated, ferrous carbonate and aluminium sulphate that are saturated. The main state of redox disequilibrium is governed by mineral precipitation and dissolution. Aqueous arsenic and manganese are possibly derived from the dissolution of pyrite (arsenopyrite) and amorphous oxide-hydroxides, respectively. The high concentration of iron in the shallow groundwater in the area is primarily the result of silicate rock weathering of ferroan igneous and metamorphic minerals with a minor contribution from the oxidation of iron sulphides. Magnetite coated with graphene oxide (Fe3O4-GO) nanoparticles (NPs) was synthesized and characterized, and the adsorption preliminary experiments were carried out; and the Fe3O4-GO NPs show enhanced removal (Fe > As > Mn) capacity over graphene oxide (GO).
  10. Thivya C, Chidambaram S, Keesari T, Prasanna MV, Thilagavathi R, Adithya VS, et al.
    Environ Geochem Health, 2016 Apr;38(2):497-509.
    PMID: 26104429 DOI: 10.1007/s10653-015-9735-7
    Uranium is a radioactive element normally present in hexavalent form as U(VI) in solution and elevated levels in drinking water cause health hazards. Representative groundwater samples were collected from different litho-units in this region and were analyzed for total U and major and minor ions. Results indicate that the highest U concentration (113 µg l(-1)) was found in granitic terrains of this region and about 10 % of the samples exceed the permissible limit for drinking water. Among different species of U in aqueous media, carbonate complexes [UO2(CO3)(2)(2-)] are found to be dominant. Groundwater with higher U has higher pCO2 values, indicating weathering by bicarbonate ions resulting in preferential mobilization of U in groundwater. The major minerals uraninite and coffinite were found to be supersaturated and are likely to control the distribution of U in the study area. Nature of U in groundwater, the effects of lithology on hydrochemistry and factors controlling its distribution in hard rock aquifers of Madurai district are highlighted in this paper.
  11. Shyamalagowri S, Bhavithra HA, Akila N, Jeyaraj SSG, Aravind J, Kamaraj M, et al.
    Environ Geochem Health, 2024 Mar 07;46(3):108.
    PMID: 38453774 DOI: 10.1007/s10653-024-01915-6
    Accumulation of polycyclic aromatic hydrocarbons (PAH) poses significant dangers to the environment and human health. The advancement of technology for cleaning up PAH-contaminated environments is receiving more attention. Adsorption is the preferred and most favorable approach for cleaning up sediments polluted with PAH. Due to their affordability and environmental friendliness, carbonaceous adsorbents (CAs) have been regarded as promising for adsorbing PAH. However, adsorbent qualities, environmental features, and factors may all significantly impact how well CAs remove PAH. According to growing data, CAs, most of which come from laboratory tests, may be utilized to decontaminate PAH in aquatic setups. However, their full potential has not yet been established, especially concerning field applications. This review aims to concisely summarize recent developments in CA, PAH stabilization processes, and essential field application-controlling variables. This review analysis emphasizes activated carbon, biochar, Graphene, carbon nanotubes, and carbon-nanomaterials composite since these CAs are most often utilized as adsorbents for PAH in aquatic systems.
  12. Shanmugam P, Parasuraman B, Boonyuen S, Thangavelu P, AlSalhi MS, Zheng ALT, et al.
    Environ Geochem Health, 2024 Feb 17;46(3):92.
    PMID: 38367085 DOI: 10.1007/s10653-024-01871-1
    A facile and cost-effective hydrothermal followed by precipitation method is employed to synthesize visible light-driven ZnS-Ag ternary composites supported on carbon aerogel (CA). Extensive studies were conducted on the structural, morphological, and optical properties, confirming the successful formation of ternary nanocomposites. The obtained results evidently demonstrate the successful loading of ZnS and Ag onto the surface of the CA. High-resolution transmission electron microscopy analysis revealed that ZnS and Ag nanoparticles (AgNPs) were uniformly distributed on the surface of the CA with an average diameter of 18 nm. The biomass-derived CA, containing a hierarchical porous nano-architecture and an abundant number of -NH2 functional groups on the surface, can greatly prevent the agglomeration, stability and reduce particle size. Brunauer-Emmett-Teller analysis results indicated specific surface areas of 4.62 m2 g-1 for the CA, 48.50 m2 g-1 for the CA/ZnS composite, and 62.62 m2 g-1 for the CA/ZnS-Ag composite. These values demonstrate an increase in surface area upon the incorporation of ZnS and Ag into the CA matrix. Under visible light irradiation, the synthesized CA/ZnS-Ag composites displayed remarkably improved photodegradation efficiency of methylene blue (MB). Among the tested samples, the CA/ZnS-Ag composites exhibited the highest percentage of photodegradation efficiency, surpassing ZnS, CA, and CA/ZnS. The obtained percentages of degradation efficiency for CA, ZnS, CA/ZnS, and CA/ZnS-Ag composites were determined as 26.60%, 52.12%, 68.39%, and 98.64%, respectively. These results highlight the superior photocatalytic performance of the CA/ZnS-Ag composites in the degradation of MB under visible light conditions. The superior efficiency of the CA/ZnS-Ag composite can be attributed to multiple factors, including its elevated specific surface area, inhibition of electron-hole pair recombination, and enhanced photon absorption within the visible light spectrum. The CA/ZnS-Ag composites displayed consistent efficiency over multiple cycles, confirming their stable performance, reusability, and enduring durability, thereby showcasing the robust nature of this composite material.
  13. Shamsuddin AS, Syed Ismail SN, Othman NMI, Zakaria NH, Abd Manan TS, Ibrahim MA, et al.
    Environ Geochem Health, 2023 Nov;45(11):7741-7757.
    PMID: 37428425 DOI: 10.1007/s10653-023-01671-z
    Excessive nitrate intake via ingestion pathway and dermal absorption exposures has adverse health impacts on human health. This study evaluated groundwater (GW) nitrate concentrations and health risks which focused on ingestion and dermal exposures to residents in Bachok District, Kelantan, Malaysia. Three hundred (300) samples of private wells were collected and it is found that the nitrate concentrations ranging between 0.11 and 64.01 mg/L NO3-N with a mean value of 10.45 ± 12.67 mg/L NO3-N. The possible health hazards of nitrate by ingestion and dermal contact were assessed using USEPA human health risk assessment model for adult males and females. It is observed that the mean Hazard Quotient (HQ) values of adult males and females were 0.305 ± 0.364 and 0.261 ± 0.330, respectively. About 7.3% (n = 10) and 4.9% (n = 8) of adult males and females had HQ values more than 1, respectively. It was also observed that the mean of HQderm was lesser than HQoral for males and females. The spatial distribution of HQ by interpolation method showed high nitrate concentrations (> 10 mg/L NO3-N) were distributed from the centre to the southern part of the study location, which identified as an agricultural area, indicating the used of nitrogenous fertilizers as the main source of GW nitrate contamination in this area. The findings of this study are valuable for establishing private well water protection measures to stop further deterioration of GW quality caused by nitrate.
  14. Shahab A, Hui Z, Rad S, Xiao H, Siddique J, Huang LL, et al.
    Environ Geochem Health, 2023 Mar;45(3):585-606.
    PMID: 35347514 DOI: 10.1007/s10653-022-01255-3
    In order to expound on the present situation and potential risk of road dust heavy metals in major cities, a total of 114 literatures mainly over the past two decades, involving more than 5000 sampling sites in 61 cities of 21 countries, were screened through the collection and analysis of research papers. The concentration, sources, distribution, health risk, sample collection, and analytical methods of heavy metal research on road dust in cities around the world are summarized. The results show that Cd, Zn, and Cu in many urban road dusts in the world are higher than the grade II of the Chinese maximum allowable concentration of potentially toxic elements in the soil. Geo-accumulation index values show that Pb > Cd > Zn > Cu had the highest contamination levels. Hazard index assessment indicates Pb and Cr had the highest potential health risk, especially for children in which ingestion was found as the main exposure pathway. Moreover, through comparative analysis, it is found that some pollutants are higher in developed and industrialized cities and transport (53%) followed by industrial emissions (35%) provide the major contributions to the sources of heavy metals.
  15. Rozaini MNH, Khoo KS, Abdah MAAM, Ethiraj B, Alam MM, Anwar AF, et al.
    Environ Geochem Health, 2024 Mar 11;46(3):111.
    PMID: 38466501 DOI: 10.1007/s10653-024-01917-4
    With the advancement of technologies and growth of the economy, it is inevitable that more complex processes are deployed, producing more heterogeneous wastewater that comes from biomedical, biochemical and various biotechnological industries. While the conventional way of wastewater treatment could effectively reduce the chemical oxygen demand, pH and turbidity of wastewater, trace pollutants, specifically the endocrine disruptor compounds (EDCs) that exist in µg L-1 or ng L-1 have further hardened the detection and removal of these biochemical pollutants. Even in small amounts, EDC could interfere human's hormone, causing severe implications on human body. Hence, this review elucidates the recent insights regarding the effectiveness of an advanced 2D material based on titanium carbide (Ti3C2Tx), also known as MXene, in detecting and removing EDCs. MXene's highly tunable feature also allows its surface chemistry to be adjusted by adding chemicals with different functional groups to adsorb different kinds of EDCs for biochemical pollution mitigation. At the same time, the incorporation of MXene into sample matrices also further eases the analysis of trace pollutants down to ng L-1 levels, thereby making way for a more cleaner and comprehensive wastewater treatment. In that sense, this review also highlights the progress in synthesizing MXene from the conventional method to the more modern approaches, together with their respective key parameters. To further understand and attest to the efficacy of MXene, the limitations and current gaps of this potential agent are also accentuated, targeting to seek resolutions for a more sustainable application.
  16. Razak MR, Aris AZ, Yusoff FM, Yusof ZNB, Abidin AAZ, Kim SD, et al.
    Environ Geochem Health, 2023 Jun;45(6):3567-3583.
    PMID: 36450975 DOI: 10.1007/s10653-022-01442-2
    Bisphenol A (BPA) is a well-known endocrine-disrupting compound that causes several toxic effects on human and aquatic organisms. The restriction of BPA in several applications has increased the substituted toxic chemicals such as bisphenol F (BPF) and bisphenol S (BPS). A native tropical freshwater cladoceran, Moina micrura, was used as a bioindicator to assess the adverse effects of bisphenol analogues at molecular, organ, individual and population levels. Bisphenol analogues significantly upregulated the expressions of stress-related genes, which are the haemoglobin and glutathione S-transferase genes, but the sex determination genes such as doublesex and juvenile hormone analogue genes were not significantly different. The results show that bisphenol analogues affect the heart rate and mortality rate of M. micrura. The 48-h lethal concentration (LC50) values based on acute toxicity for BPA, BPF and BPS were 611.6 µg L-1, 632.0 µg L-1 and 819.1 µg L-1, respectively. The order of toxicity based on the LC50 and predictive non-effect concentration values were as follows: BPA > BPF > BPS. Furthermore, the incorporated method combining the responses throughout the organisation levels can comprehensively interpret the toxic effects of bisphenol analogues, thus providing further understanding of the toxicity mechanisms. Moreover, the output of this study produces a comprehensive ecotoxicity assessment, which provides insights for the legislators regarding exposure management and mitigation of bisphenol analogues in riverine ecosystems.
  17. Praveena SM, Aris AZ
    Environ Geochem Health, 2018 Apr;40(2):749-762.
    PMID: 28929262 DOI: 10.1007/s10653-017-0021-8
    This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.
  18. Prathumratana L, Kim R, Kim KW
    Environ Geochem Health, 2020 Mar;42(3):1033-1044.
    PMID: 30206754 DOI: 10.1007/s10653-018-0186-9
    Lead contamination in topsoil of the mining and smelting area of Mitrovica, Kosovo, was investigated for total concentrations and chemical fractions by sequential extraction analysis, mineralogical fractions by X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDX). The study revealed that all samples contained Pb exceeding USEPA standard of 400 mg kg-1. The highest total concentration of Pb (125,000 mg kg-1) was the soil from the former smelter. Sequential extraction results showed that the predominant form of Pb was associated with Fe-Mn oxide-bound fraction which ranged from 45.37 to 71.61% of total concentrations, while carbonate and silicate Pb-binding fractions were dominant when physical measurements (XRD and SEM-EDX) were applied. Application of Pb isotope ratios (206Pb/207Pb and 208Pb/206Pb), measured by inductively coupled plasma mass spectrometry, identified that Pb contamination is originated from similar anthropogenic source. The results reflected that the Pb contamination in the soil of this area is serious. In order to provide proper approaches on remediation and prevention of health impacts to the people in this area, a continuous monitoring and health risk assessment are recommended.
  19. Pongpiachan S
    PMID: 34287730 DOI: 10.1007/s10653-021-01039-1
    Over the past few decades, several techniques have been applied to identify the geographical origins of rice products. In this study, the chemical characterization of polycyclic aromatic hydrocarbons (PAHs) was carefully conducted by analysing PAHs in rice samples collected from private sector planting areas located in Bali and Yogyakarta, Indonesia (i.e. ID; n = 20), west sides of Malaysia (i.e. MY; n = 20), Mandalay, Legend, Myingyan, Myanmar (i.e. MM; n = 20), northern parts of Lao PDR (i.e. LA; n = 20), central parts of Cambodia (i.e. KH; n = 20), northern parts of Vietnam (i.e. VN; n = 20), and Thailand (i.e. TH; n = 22). Percentage contributions show the exceedingly high abundance of 5-6 ring PAH congeners in rice samples collected from Indonesia, Malaysia, Thailand, Myanmar, Cambodia and Vietnam. Lao PDR rice samples were overwhelmed by 4-ring PAH congeners with the percentage contribution of 46% followed by 5-6 ring PAHs (33%) and 3-ring PAHs (21%). In addition, hierarchical cluster analysis and principal component analysis can successfully categorize some rice samples based on its geographical origins.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links