Displaying all 12 publications

Abstract:
Sort:
  1. Younus HA, Saeed M, Mahmood A, Jadoon MSK, Hameed A, Asari A, et al.
    Bioorg Chem, 2023 May;134:106450.
    PMID: 36924652 DOI: 10.1016/j.bioorg.2023.106450
    Ectonucleotidases, a well-known superfamily of plasma membrane located metalloenzymes plays a central role in mediating the process of purinergic cell signaling. Major functions performed by these enzymes include the hydrolysis of extracellular nucleosides and nucleotides which are considered as important cell-signaling molecules. Any (patho)-physiologically induced disruption in this purinergic cell signaling leads to several disorders, hence these enzymes are important drug targets for therapeutic purposes. Among the major challenges faced in the design of inhibitors of ectonucleotidases, an important one is the lack of selective inhibitors. Access to highly selective inhibitors via a facile synthetic route will not only be beneficial therapeutically, but will also lead to an increase in our understanding of intricate interplay between members of ectonucleotidase enzymes in relation to their selective activation and/or inhibition in different cells and tissues. Herein we describe synthesis of highly selective inhibitors of human intestinal alkaline phosphatase (h-IAP) and human tissue non-specific alkaline phosphatase (h-TNAP), containing chromone sulfonamide and sulfonylhydrazone scaffolds. Compound 1c exhibited highest (and most selective) h-IAP inhibition activity (h-IAP IC50 = 0.51 ± 0.20 µM; h-TNAP = 36.5%) and compound 3k showed highest activity and selective inhibition against h-TNAP (h-TNAP IC50 = 1.41 ± 0.10 µM; h-IAP = 43.1%). These compounds were also evaluated against another member of ectonucleotidase family, that is rat and human ecto-5'-nucleotidase (r-e5'NT and h-e5'NT). Some of the compounds exhibited excellent inhibitory activity against ecto-5'-nucleotidase. Compound 2 g exhibited highest inhibition against h-e5'NT (IC50 = 0.18 ± 0.02 µM). To rationalize the interactions with the binding site, molecular docking studies were carried out.
    Matched MeSH terms: 5'-Nucleotidase*
  2. Younus HA, Hameed A, Mahmood A, Khan MS, Saeed M, Batool F, et al.
    Bioorg Chem, 2020 07;100:103827.
    PMID: 32402802 DOI: 10.1016/j.bioorg.2020.103827
    Medicinal importance of the sulfonylhydrazones is well-evident owing to their binding ability with zinc containing metalloenzymes. In the present study, we have synthesized different series of sulfonylhydrazones by using facile synthetic methods in good to excellent yield. All the successfully prepared sulfonylhydrazones were screened for ectonucleotidase (ALP & e5'NT) inhibitory activity. Among the chromen-2-one scaffold based sulfonylhydrazones, the compounds 7 was found to be most potent inhibitor for h-TNAP (human tissue non-specific alkaline phosphatase) and h-IAP (human intestinal alkaline phosphatase) with IC50 values of 1.02 ± 0.13 and 0.32 ± 0.0 3 µM respectively, compared with levamisole (IC50 = 25.2 ± 1.90 µM for h-TNAP) and l-phenylalanine (IC50 = 100 ± 3.00 µM for h-IAP) as standards. Further, the chromen-2-one based molecule 5a showed excellent activity against h-ecto 5'-NT (human ecto-5'-nucleotidase) with IC50 value of 0.29 ± 0.004 µM compared to standard, sulfamic acid (IC50 = 42.1 ± 7.8 µM). However, among the series of phenyl ring based sulfonylhydrazones, compound 9d was found to be most potent against h-TNAP and h-IAP with IC50 values of 0.85 ± 0.08 and 0.52 ± 0.03 µM, respectively. Moreover, in silico studies were also carried to demonstrate their putative binding with the target enzymes. The potent compounds 5a, 7, and 9d against different ectonucleotidases (h-ecto 5'-NT, h-TNAP, h-IAP) could potentially serve as lead for the development of new therapeutic agents.
    Matched MeSH terms: 5'-Nucleotidase/antagonists & inhibitors*; 5'-Nucleotidase/metabolism
  3. Tan NH, Ponnudurai G
    Comp. Biochem. Physiol., B, 1991;99(2):351-4.
    PMID: 1764914
    1. The protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, phospholipase A, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, procoagulant, anticoagulant and hemorrhagic activities of ten samples of venoms from seven taxa of sea snakes were examined. 2. The results show that venoms of sea snakes of both subfamilies of Hydrophiinae and Laticaudinae are characterized by a very low level of enzymatic activities, except phospholipase A activity and, for some species, hyaluronidase activity. 3. Because of the low levels of enzymatic activities and the total lack of procoagulant and hemorrhagic activities, venom biological properties are not useful for the differentiation of species of sea snakes. Nevertheless, the unusually low levels of enzymatic activities of sea snake venoms may be used to distinguish sea snake venoms from other elapid or viperid venoms.
    Matched MeSH terms: 5'-Nucleotidase/metabolism
  4. Tan NH, Armugam A, Tan CS
    Comp. Biochem. Physiol., B, 1989;93(4):757-62.
    PMID: 2553329
    1. The lethalities, anticoagulant effects, hermorrhagic, thrombin-like enzyme, hyaluronidase, protease, arginine ester hydrolase, 5'-nucleotidase, L-amino acid oxidase, alkaline phosphomonoesterase, phosphodiesterase and phospholipase A activities of twenty-three samples of venoms from twelve species of Asian lance-headed pit vipers (genus Trimeresurus) were examined. 2. The results indicate that notwithstanding individual variations in venom properties, the differences in biological properties of the Trimeresurus venoms can be used for the differentiation of venoms from different species of Trimeresurus. 3. The results also suggest that differences in the biological properties of snake venoms are useful parameters in the classification of snake species. 4. Our results indicate that venoms from the species T. okinavensis exhibited biological properties markedly different from other Trimeresurus venoms examined. This observation supports the recently proposed reclassification of T. okinavensis as a member of the genus Ovophis, rather than the genus Trimeresurus.
    Matched MeSH terms: 5'-Nucleotidase/metabolism
  5. Tan NH, Ponnudurai G
    Comp. Biochem. Physiol., B, 1990;95(3):577-82.
    PMID: 2158874
    1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 31 samples of venom from three species of Agkistrodon (A. bilineatus, A. contortrix and A. piscivorus) and 10 venom samples from five other related species belonging to the same tribe of Agkistrodontini were examined. 2. The results indicate that interspecific differences in certain biological activities of the Agkistrodon venoms are more marked than individual variations of the activities, and that these differences can be used for differentiation of the species. Particularly useful for this purpose are the phosphodiesterase, arginine ester hydrolase and anticoagulant activities of the venoms. 3. Venoms of the subspecies of A. contortrix and A. piscivorus do not differ significantly in their biological activities.
    Matched MeSH terms: 5'-Nucleotidase/metabolism
  6. Tan NH, Ponnudurai G
    PMID: 1971550
    1. The intravenous median lethal doses (LD50), protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, phospholipase A, 5'-nucleotidase, hyauronidase and anticoagulant activities of fourteen samples of venoms from the four common species of krait (Bungarus caeruleus, Bungarus candidus, Bungarus multicinctus and Bungarus fasciatus) were examined. 2. The results indicate that even though there are individual variations in the biological properties of the krait venoms, interspecific differences in the properties can be used for differentiation of the venoms from the four species of Bungarus. Particularly useful for this purpose are the LD50's and the contents of 5'-nucleotidase and hyaluronidase of the venoms.
    Matched MeSH terms: 5'-Nucleotidase/metabolism
  7. Daltry JC, Ponnudurai G, Shin CK, Tan NH, Thorpe RS, Wüster W
    Toxicon, 1996 Jan;34(1):67-79.
    PMID: 8835335
    The Malayan pit viper (Calloselasma rhodostoma) is of major clinical significance both as a leading cause of snakebite and as the source of ancrod (Arvin). Although its venom has been extensively studied, the degree to which venom composition varies between individuals is poorly known. We individually analysed the venoms of over 100 C. rhodostoma using isoelectric focusing. In all populations, females produced an intense band that was absent from all males, and significant ontogenetic variation was detected. Principal components analysis of the banding profiles also revealed strong geographic variation, which was significantly congruent with variation in the biological activities of the venom (phosphodiesterase, alkalinephosphoesterase, L-amino acid oxidase, arginine ester hydrolase, 5'-nucleotidase, thrombin-like enzyme, haemorrhagic activity). Studies of captive-bred snakes indicate that the intraspecific variation in venom is genetically inherited rather than environmentally induced. The intraspecific variation in venom composition and biological activity could be of applied importance to snakebite therapy, both in correct diagnosis of the source of envenomation and in the development of a more effective antivenom. Greater attention should be given to the source of C. rhodostoma venom used in research to ensure reproducibility of results.
    Matched MeSH terms: 5'-Nucleotidase/metabolism
  8. Tenang EM, McCaldin B
    Biochem. Int., 1989 Jan;18(1):197-202.
    PMID: 2541720
    The activities of membrane marker enzymes in normal (3T3) and simian virus transformed mouse cells (SV3T3) are affected not only by densities of cultures but also by the sera types used in the growth media. We have assayed the levels of 5'nucleotidase, monoamine oxidase and rotenone insensitive NADH ferricyanide reductase in these cells grown to sparse and confluent cultures in medium supplemented with 10% newborn calf serum (n.c.s.) or in medium supplemented with 10% foetal bovine serum (f.b.s.). It was found that in 3T3 cells grown in 10% f.b.s. the transition from sparse to confluent cultures was associated with a reduction in the activities of the marker enzymes while in those grown in 10% n.c.s., the activities of these enzymes increased. In the SV3T3 cells, the activities of all the enzymes except for monoamine oxidase decreased from sparse to confluent culture densities in cells grown in 10% n.c.s. whereas in those grown in 10% f.b.s. there were no significant change in the activities of the enzymes over the same culture densities. The results suggest that the marker enzymes are affected by sera types and culture densities.
    Matched MeSH terms: 5'-Nucleotidase
  9. Tang ELH, Tan NH, Fung SY, Tan CH
    Toxicon, 2019 Aug 22;169:91-102.
    PMID: 31445943 DOI: 10.1016/j.toxicon.2019.08.004
    The intraspecific geographical venom variations of Calloselasma rhodostoma from Malaysia (CR-M), Indonesia (CR-I), Thailand (CR-T) and Vietnam (CR-V) were investigated through 1D SDS-PAGE and nano-ESI-LCMS/MS. The venom antigenicity, procoagulant activities and neutralization using Thai C. rhodostoma Monovalent Antivenom (CRMAV) were also investigated. SDS-PAGE patterns of the venoms were relatively similar with minor variations. Proteomic analysis revealed that snake venom metalloproteinases (SVMPs, particularly P-I class), serine proteases (SVSPs) and snaclecs dominated the venom protein composition (68.96-81.80%), followed by L-amino acid oxidase (LAAO) and phospholipase A2 (PLA2) (7.37-11.08% and 5.18-13.81%, respectively), corroborating C. rhodostoma envenoming effects (hemorrhage, consumptive coagulopathy, thrombocytopenia and local tissue necrosis). Other proteins of lower abundances (2.82-9.13%) identified include cysteine-rich secretory proteins (CRISP), phospholipase B, phosphodiesterase, nerve growth factor, 5'-nucleotidase, aminopeptidase and hyaluronidase. All four venoms exhibited strong procoagulant effects which were neutralized by CRMAV to different extents. CRMAV immunoreactivity was high toward venoms of CR-M, CR-I and CR-T but relatively low for CR-V venom. Among the venom samples from different locales, CR-V venom proteome has the smallest SVMP composition while SVSP, PLA2 and phosphodiesterase were more abundant in the venom. These variations in C. rhodostoma venom protein composition could partly explain the differences seen in immunoreactivity. (198 words).
    Matched MeSH terms: 5'-Nucleotidase
  10. Salehinejad P, Alitheen NB, Ali AM, Omar AR, Mohit M, Janzamin E, et al.
    In Vitro Cell Dev Biol Anim, 2012 Feb;48(2):75-83.
    PMID: 22274909 DOI: 10.1007/s11626-011-9480-x
    Several techniques have been devised for the dissociation of tissues for primary culture. These techniques can affect the quantity and quality of the isolated cells. The aim of our study was to develop the most appropriate method for the isolation of human umbilical cord-derived mesenchymal (hUCM) cells. In the present study, we compared four methods for the isolation of hUCM cells: three enzymatic methods; collagenase/hyaluronidase/trypsin (CHT), collagenase/trypsin (CT) and trypsin (Trp), and an explant culture (Exp) method. The trypan blue dye exclusion test, the water-soluble tetrazolium salt-1 (WST-1) assay, flow cytometry, alkaline phosphatase activity and histochemical staining were used to evaluate the results of the different methods. The hUCM cells were successfully isolated by all methods but the isolation method used profoundly altered the cell number and proliferation capacity of the isolated cells. The cells were successfully differentiated into adipogenic and osteogenic lineages and alkaline phosphatase activity was detected in the hUCM cell colonies of all groups. Flow cytometry analysis revealed that CD44, CD73, CD90 and CD105 were expressed in all groups, while CD34 and CD45 were not expressed. The expression of C-kit in the enzymatic groups was higher than in the explant group, while the expression of Oct-4 was higher in the CT group compared to the other groups. We concluded that the collagenase/trypsin method of cell isolation yields a higher cell density than the others. These cells expressed a higher rate of pluripotent cell markers such as C-kit and Oct-4, while the explant method of cell isolation resulted in a higher cell proliferation rate and activity compared to the other methods.
    Matched MeSH terms: 5'-Nucleotidase/biosynthesis
  11. Tong CK, Vellasamy S, Tan BC, Abdullah M, Vidyadaran S, Seow HF, et al.
    Cell Biol Int, 2011 Mar;35(3):221-6.
    PMID: 20946106 DOI: 10.1042/CBI20100326
    MSCs (mesenchymal stem cells) promise a great potential for regenerative medicine due to their unique properties of self-renewal, high plasticity, modulation of immune response and the flexibility for genetic modification. Therefore, the increasing demand for cellular therapy necessitates a larger-scale production of MSC; however, the technical and ethical issues had put a halt on it. To date, studies have shown that MSC could be derived from human UC (umbilical cord), which is once considered as clinical waste. We have compared the two conventional methods which are classic enzymatic digestion and explant method with our newly tailored enzymatic-mechanical disassociation method to generate UC-MSC. The generated UC-MSCs from the methods above were characterized based on their immunophenotyping, early embryonic transcription factors expression and mesodermal differentiation ability. Our results show that enzymatic-mechanical disassociation method increase the initial nucleated cell yield greatly (approximately 160-fold) and maximized the successful rate of UC-MSC generation. Enzymatic-mechanical disassociation-derived UC-MSC exhibited fibroblastic morphology and surface markers expression of CD105, CD73, CD29, CD90 and MHC class I. Furthermore, these cells constitutively express early embryonic transcription factors (Nanog, Oct-4, Sox-2 and Rex-1), as confirmed by RT-PCR, indicating their multipotency and high self-renewal capacity. They are also capable of differentiating into osteoblasts and adipocytes when given an appropriate induction. The present study demonstrates a new and efficient approach in generating MSC from UC, hence serving as ideal alternative source of mesenchymal stem cell for clinical and research use.
    Matched MeSH terms: 5'-Nucleotidase/metabolism
  12. Tan NH, Tan CS
    Comp. Biochem. Physiol., B, 1988;90(4):745-50.
    PMID: 2854766
    1. The L-amino acid oxidase, hyaluronidase, alkaline phosphomonoesterase, protease, phosphodiesterase, acetylcholinesterase, phospholipase A and 5'-nucleotidase activities of 47 samples of venoms from all the six species of cobra (Naja), including five subspecies of Naja naja, were examined. 2. The results demonstrated interspecific differences in the venom contents of phospholipase A, acetylcholinesterase, hyaluronidase and phosphodiesterase. These differences in venom enzyme contents can be used for the differentiation of species of the genus Naja. 3. Thus, our results revealed a correlation between the enzyme composition of venom and the taxonomic status of the snake at the species level for the genus Naja.
    Matched MeSH terms: 5'-Nucleotidase
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links