The L-amino acid oxidase (EC 1. 4. 3. 2) from King cobra (Ophiophagus hannah) venom was purified to electrophoretic homogeneity. The molecular weight of the enzyme was determined to be 140000 when examined by gel filtration and 68000 by SDS-polyacrylamide gel electrophoresis. The enzyme had an isoelectric point of 4.5 and an intravenous LD50 of 5 micrograms/g in mice. It is a glycoprotein and contains two moles of FAD per mole of enzyme. The enzyme exhibited unusual thermal stability and unlike most other venom L-amino acid oxidases, it was stable in alkaline solution and was not inactivated by freezing.
The L-amino acid oxidase of Malayan pit viper (Calloselasma rhodostoma) venom was purified to electrophoretic homogeneity. The molecular weight of the enzyme was 132,000 as determined by Sephadex G-200 gel filtration chromatography and 66,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is a glycoprotein, has an isoelectric point of 4.4, and contains 2 mol of flavin mononucleotide per mole of enzyme. The N-terminal amino acid sequence of the enzyme was A-D-D-R-N-P-L-A-E-E-F-Q-E-N-N-Y-E-E-F-L. Kinetic studies suggest the presence of a alkyl side-chain binding site in the enzyme and that the binding site comprises at least four hydrophobic subsites. The characteristics of the binding site differ slightly from those of cobra venom L-amino acid oxidases.
The purpose of this study was to evaluate the effectiveness of using RNA interference in down regulating the expression of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Eksotika papaya. One-month old embryogenic calli were separately transformed with Agrobacterium strain LBA 4404 harbouring the three different RNAi pOpOff2 constructs bearing the 1-aminocyclopropane-1-carboxylic acid oxidase gene. A total of 176 putative transformed lines were produced from 15,000 calli transformed, selected, then regenerated on medium supplemented with kanamycin. Integration and expression of the targeted gene in putatively transformed lines were verified by PCR and real-time RT-PCR. Confined field evaluation of a total of 31 putative transgenic lines planted showed a knockdown expression of the targeted ACO1 and ACO2 genes in 13 lines, which required more than 8 days to achieve the full yellow colour (Index 6). Fruits harvested from lines pRNAiACO2 L2-9 and pRNAiACO1 L2 exhibited about 20 and 14 days extended post-harvest shelf life to reach Index 6, respectively. The total soluble solids contents of the fruits ranged from 11 to 14° Brix, a range similar to fruits from non-transformed, wild type seed-derived plants.
1. The L-amino acid oxidase of the monocellate cobra (Naja naja kaouthia) venom was purified to electrophoretic homogeneity. The molecular weight of the enzyme was 112,200 as determined by Sephadex G-200 gel filtration chromatography, and 57,400 as determined by SDS-polyacrylamide gel electrophoresis. 2. The enzyme had an isoelectric point of 8.12 and a pH optimum of 8.5. It showed remarkable thermal stability, and, unlike many venom L-amino acid oxidase, was also stable in alkaline medium. The enzyme was partially inactivated by freezing. 3. The enzyme was very active against L-phenylalanine and L-tyrosine, moderately active against L-tryptophan, L-methionine, L-leucine, L-norleucine, L-arginine and L-norvaline. Other L-amino acids were oxidized slowly or not oxidized. 4. Kinetic studies suggest the presence of a side-chain binding site in the enzyme, and that the binding site comprises of at least four hydrophobic subsites.
1. Substrate specificity of purified king cobra (Ophiophagus hannah) venom L-amino acid oxidase was investigated. 2. The enzyme was highly specific for the L-enantiomer of amino acid. Effective oxidation of L-amino acid by the enzyme requires the presence of a free primary alpha-amino group but the alpha-carboxylate group is not as critical for the catalysis. 3. The enzyme was very active against L-Lys, L-Phe, L-Leu, L-Tyr, L-Tryp, L-Arg, L-Met, L-ornithine, L-norleucine and L-norvaline and moderately active against L-His, L-cystine and L-Ileu. Other L-amino acids were oxidized slowly or not oxidized. 4. The data suggest the presence of a side chain binding site in the enzyme, and that the binding site comprises at least five 'subsites': the hydrophobic subsites a, b and c; and the two 'amino' binding subsites d and e. Subsite b appears to be able to accommodate two methylene/methyl carbons.
Indirect ELISA shows that the antibodies to Calloselasma rhodostoma venom hemorrhagin (CR-HMG), thrombin-like enzyme (CR-TLE) and L-amino acid oxidase (CR-LAAO) exhibited strong to moderate cross-reactions with most crotalid and viperid venoms, but only anti-CR-LAAO cross-reacted with the elapid venoms. However, the indirect ELISA failed to detect some antigenic similarities demonstrable by cross-neutralization study. The double-sandwich ELISA for the three anti-C. rhodostoma venom components exhibited a much lower level of cross-reactions than the indirect ELISA.
The antigenic cross-reactivity of four Ophiophagus hannah (king cobra) venom components, the neurotoxin (OH-NTX), phospholipase A2 (OH-PLA2), hemorrhagin (OH-HMG) and L-amino acid oxidase (OH-LAAO) were examined by indirect and double sandwich ELISAs. The indirect ELISAs for OH-NTX, OH-PLA2 and OH-HMG were very specific when assayed against the various heterologous snake venoms and O. hannah venom components, at 25 ng/ml antigen level. At higher antigen concentrations (100-400 ng/ml), there were moderate to strong indirect ELISA cross-reactions between anti-O. hannah neurotoxin and venoms from various species of cobra as well as two short neurotoxins. However, anti-O. hannah hemorrhagin did not cross-react with any of the venoms tested, even at these high antigen concentrations, indicating that O. hannah hemorrhagin is antigenically very different from other venom hemorrhagins. Examination of the indirect ELISA cross-reactions between anti-O. hannah PLA2 and several elapid PLA2 enzymes suggests that the elapid PLA2 antigenic class has more than two subgroups. The antibodies to O. hannah L-amino acid oxidase, however, yielded indirect ELISA cross-reactions with many venoms as well as with OH-NTX, OH-PLA2 and OH-HMG, indicating that OH-LAAO shares common epitopes even with unrelated proteins. The double sandwich ELISAs for the four anti-O. hannah venom components, on the other hand, generally exhibited a higher degree of selectivity than the indirect ELISA procedure.
1. The protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, phospholipase A, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, procoagulant, anticoagulant and hemorrhagic activities of ten samples of venoms from seven taxa of sea snakes were examined. 2. The results show that venoms of sea snakes of both subfamilies of Hydrophiinae and Laticaudinae are characterized by a very low level of enzymatic activities, except phospholipase A activity and, for some species, hyaluronidase activity. 3. Because of the low levels of enzymatic activities and the total lack of procoagulant and hemorrhagic activities, venom biological properties are not useful for the differentiation of species of sea snakes. Nevertheless, the unusually low levels of enzymatic activities of sea snake venoms may be used to distinguish sea snake venoms from other elapid or viperid venoms.
1. The L-amino acid oxidase, hyaluronidase, alkaline phosphomonoesterase, protease, phosphodiesterase, acetylcholinesterase, phospholipase A and 5'-nucleotidase activities of 47 samples of venoms from all the six species of cobra (Naja), including five subspecies of Naja naja, were examined. 2. The results demonstrated interspecific differences in the venom contents of phospholipase A, acetylcholinesterase, hyaluronidase and phosphodiesterase. These differences in venom enzyme contents can be used for the differentiation of species of the genus Naja. 3. Thus, our results revealed a correlation between the enzyme composition of venom and the taxonomic status of the snake at the species level for the genus Naja.
Stem cells (SCs) are capable of self-renewal and multilineage differentiation. Human mesenchymal stem cells (MSCs) and haematopoietic stem cells (HSCs) which can be obtained from multiple sources, are suitable for application in regenerative medicine and transplant therapy. The aim of this review is to evaluate the potential of genomic and proteomic profiling analysis to identify the differentiation of MSCs and HSCs towards osteoblast and odontoblast lineages. In vitro differentiation towards both of these lineages can be induced using similar differentiation factors. Gene profiling cannot be utilised to confirm the lineages of these two types of differentiated cells. Differentiated cells of both lineages express most of the same markers. Most researchers have detected the expression of genes such as ALP, OCN, OPN, BMP2 and RUNX2 in osteoblasts and the expression of the DSPP gene in odontoblasts. Based on their cell-type specific protein profiles, various proteins are differentially expressed by osteoblasts and odontoblasts, except for vimentin and heterogeneous nuclear ribonucleoprotein C, which are expressed in both cell types, and LOXL2 protein, which is expressed only in odontoblasts.
1. The hemorrhagic, procoagulant, anticoagulant, protease, arginine ester hydrolase, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, phospholipase A and L-amino acid oxidase activities of 50 venom samples from 20 taxa of rattlesnake (genera Crotalus and Sistrurus) were examined. 2. The results show that notwithstanding individual variations in the biological activities of Crotalus venoms and the wide ranges of certain biological activities observed, there are some common characteristics at the genus and species levels. 3. The differences in biological activities of the venoms compared can be used for differentiation of the species. Particularly useful for this purpose are the thrombin-like enzyme, protease, arginine ester hydrolase, hemorrhagic and phospholipase A activities and kaolin-cephalin clotting time measurements.
1. The lethalities, anticoagulant effects, hermorrhagic, thrombin-like enzyme, hyaluronidase, protease, arginine ester hydrolase, 5'-nucleotidase, L-amino acid oxidase, alkaline phosphomonoesterase, phosphodiesterase and phospholipase A activities of twenty-three samples of venoms from twelve species of Asian lance-headed pit vipers (genus Trimeresurus) were examined. 2. The results indicate that notwithstanding individual variations in venom properties, the differences in biological properties of the Trimeresurus venoms can be used for the differentiation of venoms from different species of Trimeresurus. 3. The results also suggest that differences in the biological properties of snake venoms are useful parameters in the classification of snake species. 4. Our results indicate that venoms from the species T. okinavensis exhibited biological properties markedly different from other Trimeresurus venoms examined. This observation supports the recently proposed reclassification of T. okinavensis as a member of the genus Ovophis, rather than the genus Trimeresurus.
1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 31 samples of venom from three species of Agkistrodon (A. bilineatus, A. contortrix and A. piscivorus) and 10 venom samples from five other related species belonging to the same tribe of Agkistrodontini were examined. 2. The results indicate that interspecific differences in certain biological activities of the Agkistrodon venoms are more marked than individual variations of the activities, and that these differences can be used for differentiation of the species. Particularly useful for this purpose are the phosphodiesterase, arginine ester hydrolase and anticoagulant activities of the venoms. 3. Venoms of the subspecies of A. contortrix and A. piscivorus do not differ significantly in their biological activities.
1. The intravenous median lethal doses (LD50), protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, phospholipase A, 5'-nucleotidase, hyauronidase and anticoagulant activities of fourteen samples of venoms from the four common species of krait (Bungarus caeruleus, Bungarus candidus, Bungarus multicinctus and Bungarus fasciatus) were examined. 2. The results indicate that even though there are individual variations in the biological properties of the krait venoms, interspecific differences in the properties can be used for differentiation of the venoms from the four species of Bungarus. Particularly useful for this purpose are the LD50's and the contents of 5'-nucleotidase and hyaluronidase of the venoms.
The Malayan pit viper (Calloselasma rhodostoma) is of major clinical significance both as a leading cause of snakebite and as the source of ancrod (Arvin). Although its venom has been extensively studied, the degree to which venom composition varies between individuals is poorly known. We individually analysed the venoms of over 100 C. rhodostoma using isoelectric focusing. In all populations, females produced an intense band that was absent from all males, and significant ontogenetic variation was detected. Principal components analysis of the banding profiles also revealed strong geographic variation, which was significantly congruent with variation in the biological activities of the venom (phosphodiesterase, alkalinephosphoesterase, L-amino acid oxidase, arginine ester hydrolase, 5'-nucleotidase, thrombin-like enzyme, haemorrhagic activity). Studies of captive-bred snakes indicate that the intraspecific variation in venom is genetically inherited rather than environmentally induced. The intraspecific variation in venom composition and biological activity could be of applied importance to snakebite therapy, both in correct diagnosis of the source of envenomation and in the development of a more effective antivenom. Greater attention should be given to the source of C. rhodostoma venom used in research to ensure reproducibility of results.
The plant hormone, ethylene, is an important regulator which involved in regulating fruit ripening and flower senescence. In this study, RNA interference (RNAi) technology was employed to silence the genes involved in ethylene biosynthetic pathway. This was achieved by blocking the expression of specific gene encoding the ACC oxidase. Initially, cDNA corresponding to ACO1 of lowland tomato cultivar (MT1), which has high identity with ACO1 of Solanum lycopersicum in GenBank, was cloned through RT-PCR. Using a partial coding region of ACO1, one hpRNAi transformation vector was constructed and expressed ectopically under the 35S promoter. Results showed that transgenic lines harboring the hpRNA-ACO1 construct had lower ethylene production and a longer shelf life of 32 days as compared to 10 days for wild-type fruits. Changes in cell wall degrading enzyme activities were also investigated in cases where the transgenic fruits exhibited reduced rates of firmness loss, which can be associated with a decrease in pectin methylesterase (PME) and polygalacturonase (PG) activities. However, no significant change was detected in both transgenic and wild-type fruits in terms of β-galactosidase (β-Gal) activity and levels of total soluble solid, titratable acid and ascorbic acid.