Displaying all 3 publications

Abstract:
Sort:
  1. Ang CY, Samsudin AR, Karima AM, Nizam A
    Med J Malaysia, 2004 May;59 Suppl B:149-50.
    PMID: 15468862
    The aim of this study was to evaluate the morphological and biological properties of a locally produced "Bovine Bone Sponge" for use in dentistry. Bovine bone sponge was prepared from local calf bone. Endotoxin level and surface properties were investigated. The pore size and water uptake ability were measured and results were compared with the commercial haemostatic agent. The material was tested for its haemostatic property and its inhibition of alveolar bone resorption in a sheep model following dental extraction. Results revealed a significant difference in haemostatic effect, and a shorter bleeding time and a lower rate of alveolar bone resorption in bovine bone sponge compare to a commercial haemostatic agent.
    Matched MeSH terms: Alveolar Bone Loss/prevention & control
  2. Al Qabbani A, Al Kawas S, A Razak NH, Al Bayatti SW, Enezei HH, Samsudin AR, et al.
    J Craniofac Surg, 2018 Mar;29(2):e203-e209.
    PMID: 29303859 DOI: 10.1097/SCS.0000000000004263
    INTRODUCTION: Alveolar bone is critical in supporting natural teeth, dental implants as well as a removable and fixed prosthesis. Alveolar bone volume diminishes when its associated natural tooth is lost.

    OBJECTIVE: The aim of this study is to evaluate the effectiveness of bovine bone granules on alveolar bone socket augmentation for ridge preservation following atraumatic tooth extraction.

    MATERIALS AND METHODS: Twenty medically fit patients (12 males and 8 females aged between 18 and 40 years) who needed noncomplicated tooth extraction of 1 mandibular premolar tooth were divided randomly and equally into 2 groups. In control group I, the empty extraction socket was left untreated and allowed to heal in a conventional way. In group II, the empty extraction socket wound was filled with lyophilized bovine bone xenograft granules 0.25 to 1 mm of size, 1 mL/vial. A resorbable pericardium membrane was placed to cover the defect. Clinical and 3-dimensional radiological assessments were performed at day 0, 3 months, and 9 months postoperative.

    RESULTS: There were no clinical differences in general wound healing between the groups. Comparisons within the groups showed a significant difference of bone resorption of 1.49 mm (95% confidence interval, 0.63-2.35) at 3 months, and further resorption of 1.84 mm (P ≤ 0.05) at 9 months in the control group. No significant changes of bone resorption were observed in group II during the same time interval. Comparison between groups showed a significant difference of bone resorption at 3 and 9 months (2.40 and 2.88 mm, respectively).

    CONCLUSION: The use of lyophilized demineralized bovine bone granules in socket preservation to fill in the extraction socket seems essential in preserving the alveolar bone dimension as it showed excellent soft and hard tissue healing. This study concludes that the alveolar bone socket exhibited a dynamic process of resorption from the first day of tooth extraction. Evidence shows the possibility of using bovine bone granules routinely in socket volume preservation techniques following tooth extraction.

    Matched MeSH terms: Alveolar Bone Loss/prevention & control*
  3. Qabbani AA, Razak NHA, Kawas SA, Sheikh Abdul Hamid S, Wahbi S, Samsudin AR
    J Craniofac Surg, 2017 Jun;28(4):e318-e325.
    PMID: 28230596 DOI: 10.1097/SCS.0000000000003569
    The aim of this study was to determine the efficacy of immediate implant placement with alveolar bone augmentation on socket preservation following atraumatic tooth extraction and comparing it with a tooth alveolar socket that was allowed to heal in a conventional way.Twenty medically fit patients (8 males and 12 females aged between 18 and 40 years) who needed noncomplicated tooth extraction of mandibular premolar teeth were divided randomly and equally into 2 groups. In Group I, the empty extraction socket was left untreated and allowed to heal in a conventional way. In Group II, the immediate implant was placed and the gap between the implant and the inner buccal plate surface of the socket wall was filled with lyophilized bovine bone granules and the wound was covered with pericardium membrane. The patients were followed up clinically and radiologically for regular reviews at 1 week, 3 months, and 9 months postoperative. Cone beam computerized tomography images of the alveolar ridge and socket were analyzed to determine the structural changes of the alveolar ridge. Resonance frequency analysis was measured at 9 months for Group II to assess the degree of secondary stability of the implants by using Osstell machine.A significant difference of bone resorption of 1.49 mm (confidence interval, CI 95%, 0.63-2.35) was observed within the control group at 3 months, and 1.84 mm (P ≤ 0.05) at 9 months intervals. No significant changes of bone resorption were observed in Group II. Comparison between groups showed a highly significant difference at 3 months; 2.56 mm (CI 95% 4.22-0.90) and at 9 months intervals; 3.2 mm (CI 95%, 4.70-1.62) P ≤ 0.001 between Group I and II. High resonance frequency analysis values were observed at 9 months postoperative in Group II.In conclusion, the insertion of immediate implants in fresh extraction sockets together with grafting the circumferential gap between the bony socket wall and the implant surface with bovine bone granules was able to preserve a greater amount of alveolar ridge volume when compared with an extraction socket that was left to heal in a conventional way.
    Matched MeSH terms: Alveolar Bone Loss/prevention & control*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links