Displaying publications 1 - 20 of 15465 in total

Abstract:
Sort:
  1. Kamarudin NB, Sharma S, Gupta A, Kee CG, Chik SMSBT, Gupta R
    3 Biotech, 2017 Jun;7(2):127.
    PMID: 28573397 DOI: 10.1007/s13205-017-0767-9
    Uncontrolled disposal of feathers from the poultry industry and slaughterhouses is environmentally undesirable. The feathers are composed of approximately 90% of keratin which is an important ingredient of cosmetics, shampoos and hair treatment creams. This study aimed to determine the optimum conditions for the extraction of keratin from chicken feathers. The extraction of keratin using various reducing agents was studied using statistical experimental design. In the extraction process, pH, temperature, ratio of reducing agents, mass of chicken feathers and incubation time were analyzed. The keratin in the total extracted protein was purified by size exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and further characterized using amino acids profile analysis. The surface morphology and chemical composition were studied by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. Sodium sulfide (Na2S) yielded 84.5% of keratin as compared to sodium hydroxide (43.8), urea mixture (50.6), mixture of sodium dodecyl sulfate (SDS) and sodium bisulfite (18.3) and a mixture of Na2S and sodium hydroxide (41.5%) under optimized conditions. The optimum yield of keratin was achieved at 80.9 °C in 9.5 h with 0.05 M sodium sulfide using response surface methodology (RSM). Among the five parameters screened, pH was found not to be significant because the p value was greater than 0.05.
    Matched MeSH terms: Animals
  2. AlMatar M, Makky EA
    3 Biotech, 2016 Jun;6(1):4.
    PMID: 28330073 DOI: 10.1007/s13205-015-0323-4
    Fungi are important natural product sources that have enormous potential for the production of novel compounds for use in pharmacology, agricultural applications and industry. Compared with other natural sources such as plants, fungi are highly diverse but understudied. However, research on Cladosporium cladosporioides revealed the existence of bioactive products such as p-methylbenzoic acid, ergosterol peroxide (EP) and calphostin C as well as enzymes including pectin methylesterase (PME), polygalacturonase (PG) and chlorpyrifos hydrolase. p-Methylbenzoic acid has ability to synthesise 1,5-benzodiazepine and its derivatives, polyethylene terephthalate and eicosapentaenoic acid. EP has anticancer, antiangiogenic, antibacterial, anti-oxidative and immunosuppressive properties. Calphostin C inhibits protein kinase C (PKC) by inactivating both PKC-epsilon and PKC-alpha. In addition, calphostin C stimulates apoptosis in WEHI-231 cells and vascular smooth muscle cells. Based on the stimulation of endoplasmic reticulum stress in some types of cancer, calphostin C has also been evaluated as a potential photodynamic therapeutic agent. Methylesterase (PME) and PG have garnered attention because of their usage in the food processing industry and significant physiological function in plants. Chlorpyrifos, a human, animal and plant toxin, can be degraded and eliminated by chlorpyrifos hydrolase.
    Matched MeSH terms: Animals
  3. Biglari N, Ganjali Dashti M, Abdeshahian P, Orita I, Fukui T, Sudesh K
    3 Biotech, 2018 Aug;8(8):330.
    PMID: 30073115 DOI: 10.1007/s13205-018-1351-7
    This study aimed to enhance production of polyhydroxybutyrate P(3HB) by a newly engineered strain of Cupriavidus necator NSDG-GG by applying response surface methodology (RSM). From initial experiment of one-factor-at-a-time (OFAT), glucose and urea were found to be the most significant substrates as carbon and nitrogen sources, respectively, for the production of P(3HB). OFAT experiment results showed that the maximum biomass, P(3HB) content, and P(3HB) concentration of 8.95 g/L, 76 wt%, and 6.80 g/L were achieved at 25 g/L glucose and 0.54 g/L urea with an agitation rate of 200 rpm at 30 °C after 48 h. In this study, RSM was applied to optimize the three key variables (glucose concentration, urea concentration, and agitation speed) at a time to obtain optimal conditions in a multivariable system. Fermentation experiments were conducted in shaking flask by cultivation of C. necator NSDG-GG using various glucose concentrations (10-50 g/L), urea concentrations (0.27-0.73 g/L), and agitation speeds (150-250 rpm). The interaction between the variables studied was analyzed by ANOVA analysis. The RSM results indicated that the optimum cultivation conditions were 37.70 g/L glucose, 0.73 g/L urea, and 200 rpm agitation speed. The validation experiments under optimum conditions produced the highest biomass of 12.84 g/L, P(3HB) content of 92.16 wt%, and P(3HB) concentration of 11.83 g/L. RSM was found to be an efficient method in enhancing the production of biomass, P(3HB) content, and P(3HB) concentration by 43, 21, and 74%, respectively.
    Matched MeSH terms: Animals
  4. Adzitey F, Ali GR, Huda N, Ahmad R
    3 Biotech, 2013 Dec;3(6):521-527.
    PMID: 28324423 DOI: 10.1007/s13205-013-0115-7
    Salmonella species are important foodborne pathogens that can cause illness and death in humans. The objective of this study was to determine the genetic relatedness of 115 Salmonella strains isolated from ducks and their environment using random amplified polymorphic deoxyribonucleic acid (RAPD). The analysis of Salmonella strains by RAPD produced DNA fingerprints of different sizes for differentiation purposes, and cluster analysis at a coefficient of 0.85 grouped the Salmonella strains into various clusters and singletons. S. Typhimurium were grouped into nine clusters and ten singletons, S. Hadar were grouped into seven clusters and nine singletons, S. Enteritidis were grouped into four clusters and five singletons, S. Braenderup were grouped into five clusters and four singletons, S. Albany were grouped into two clusters and seven singletons, and S. Derby were grouped into two clusters and four singletons at a coefficient of 0.85 with discriminatory index (D) ranging from 0.879 to 0.957. With the exception of S. Typhimurium strains which were grouped into three major groups (genotypes) by RAPD analysis, the rest were grouped into two major genotypes. RAPD was a useful genotyping tool for determining the genetic relatedness of the duck Salmonella strains. Comparison of the genetic relatedness among foodborne pathogens and their sources of isolation are important to trace their source and possibly the source of human infection.
    Matched MeSH terms: Animals
  5. Lam MQ, Nik Mut NN, Thevarajoo S, Chen SJ, Selvaratnam C, Hussin H, et al.
    3 Biotech, 2018 Feb;8(2):104.
    PMID: 29404232 DOI: 10.1007/s13205-018-1133-2
    A halophilic bacterium, Virgibacillus sp. strain CD6, was isolated from salted fish and its extracellular protease was characterized. Protease production was found to be highest when yeast extract was used as nitrogen source for growth. The protease exhibited stability at wide range of salt concentration (0-12.5%, w/v), temperatures (20-60 °C), and pH (4-10) with maximum activity at 10.0% (w/v) NaCl, 60 °C, pH 7 and 10, indicating its polyextremophilicity. The protease activity was enhanced in the presence of Mg2+, Mn2+, Cd2+, and Al3+ (107-122% relative activity), and with retention of activity > 80% for all of other metal ions examined (K+, Ca2+, Cu2+, Co2+, Ni2+, Zn2+, and Fe3+). Both PMSF and EDTA inhibited protease activity, denoting serine protease and metalloprotease properties, respectively. High stability (> 70%) was demonstrated in the presence of organic solvents and detergent constituents, and the extracellular protease from strain CD6 was also found to be compatible in commercial detergents. Proteinaceous stain removal efficacy revealed that crude protease of strain CD6 could significantly enhance the performance of commercial detergent. The protease from Virgibacillus sp. strain CD6 could serve as a promising alternative for various applications, especially in detergent industry.
    Matched MeSH terms: Animals
  6. Rupani PF, Embrandiri A, Ibrahim MH, Shahadat M, Hansen SB, Mansor NNA
    3 Biotech, 2017 Jul;7(3):155.
    PMID: 28623493 DOI: 10.1007/s13205-017-0770-1
    Several technologies are being applied for treatment of palm oil mill wastes. Among them, the biological treatments (vermicomposting) have widely been recognized as one of the most efficient and eco-friendly methods for converting organic waste materials into valuable products. The present study focuses on vermicomposting of acidic palm oil mill effluent (POME) mixed with the palm pressed fibre (PPF) which are found difficult to decompose in the environment. The industrial waste (POME) was vermicomposted using Lumbricus rubellus under laboratory conditions for a period of 45 days. A significant improvement in nitrogen, phosphorus, and potassium content was monitored during vermicomposting process. In addition, the decline in C:N ratio of vermicompost (up to 17.20 ± 0.60) reflects the degree of stabilization of POME-PPF mixture. Different percentages of the vermicompost extract obtained from POME-PPF mixture were also examined for the germination of mung bean (Vigna radiata) seed. The results showed that 75% vermicompost extract demonstrated better performance for the seed germination. On the basis of significant findings, POME-PPF mixture can be successfully used as a feeding material for the earthworms, while on the other hand, it can also be used as a cost-effective fertilizer for the germination and the proper growth of mung bean.
    Matched MeSH terms: Animals
  7. Ismail NZ, Arsad H, Samian MR, Hamdan MR, Othman AS
    3 Biotech, 2018 Jan;8(1):62.
    PMID: 29354373 DOI: 10.1007/s13205-018-1092-7
    This study was conducted to determine the feasibility of using three plastid DNA regions (matK, trnH-psbA, and rbcL) as DNA barcodes to identify the medicinal plant Clinacanthus nutans. In this study, C. nutans was collected at several different locations. Total genomic DNA was extracted, amplified by polymerase chain reaction (PCR), and sequenced using matK, trnH-psbA, and rbcL, primers. DNA sequences generated from PCR were submitted to the National Center for Biotechnology Information's (NCBI) GenBank. Identification of C. nutans was carried out using NCBI's Basic Local Alignment Search Tool (BLAST). The rbcL and trnH-psbA regions successfully identified C. nutans with sequencing rates of 100% through BLAST identification. Molecular Evolutionary Genetics Analysis (MEGA) 6.0 was used to analyze interspecific and intraspecific divergence of plastid DNA sequences. rbcL and matK exhibited the lowest average interspecific distance (0.0487 and 0.0963, respectively), whereas trnH-psbA exhibited the highest average interspecific distance (0.2029). The R package Spider revealed that trnH-psbA correctly identified Barcode of Life Data System (BOLD) 96%, best close match 79%, and near neighbor 100% of the species, compared to matK (BOLD 72%; best close match 64%; near neighbor 78%) and rbcL (BOLD 77%; best close match 62%; near neighbor 88%). These results indicate that trnH-psbA is very effective at identifying C. nutans, as it performed well in discriminating species in Acanthaceae.
    Matched MeSH terms: Animals
  8. Nayak AG, Kumar N, Shenoy S, Roche M
    3 Biotech, 2020 Nov;10(11):476.
    PMID: 33083200 DOI: 10.1007/s13205-020-02462-4
    The study investigates the ability of methanolic extract of Andrographis paniculata (MAP) to supplement polyvalent anti-snake venom (ASV) in inhibiting neurotoxic enzyme acetylcholinesterase (AChE) and 'spreading factor' hyaluronidase from Naja naja (N.N) venom. AChE and hyaluronidase activity were measured in 100 or 200 µg of crude venom, respectively, and designated as 'control'. In Test Group I, enzyme assays were performed immediately after the addition of ASV/MAP/ASV + MAP to the venom. Inhibition of AChE by ASV (100-367 µg) was 12-17%, and of hyaluronidase (22-660 µg) was 33-41%. Under the same conditions, MAP (100-400 µg) inhibited AChE and hyaluronidase to the extent of 17-33% and 17-52%, respectively. When ASV (220 µg) and MAP (100-200 µg) were added together, AChE and hyaluronidase were inhibited to a greater extent from 39-63 to 36-44%, than when either of them was used alone. In Test Group 2, the venom was incubated with ASV/MAP/ASV + MAP for 10-30 min at 37 °C prior to the assay which enhanced AChE inhibition by 6%, 82% and 18% respectively, when compared to Test Group I. Though there was no change in inhibition of hyaluronidase in the presence of ASV, MAP could further increase the extent of inhibition by 27% and ASV + MAP upto 4%. In Test Group III, venom and substrate were incubated for 90 min and hyaluronidase activity was measured after the addition of inhibitors. Here, ASV + MAP caused increased inhibition by 69% compared to ASV alone. The study confirms the ability of phytochemicals in MAP to contribute to a multipronged strategy by supplementing, thereby augmenting the efficacy of ASV.
    Matched MeSH terms: Animals
  9. Nurdalila AA, Natnan ME, Baharum SN
    3 Biotech, 2020 Dec;10(12):544.
    PMID: 33240745 DOI: 10.1007/s13205-020-02543-4
    Mass mortality resulting from bacterial infection poses a major problem in the grouper aquaculture industry. The purpose of this study was to profile the metabolites released in challenged fish and to reconstruct the metabolic pathways of brown marble grouper (Epinephelus fuscoguttatus) in response to Vibrio vulnificus infection. Metabolite profiles from control and challenged treatment groups after feeding were determined using gas chromatography-mass spectrometry (GC-MS). Forty metabolites were identified from the GC-MS analysis. These metabolites comprised of amino acids, fatty acids, organic acids and carbohydrates. The profiles showed the highest percent area (33.1%) for leucine from the amino acid class in infected fish compared to the control treatment group (12.3%). Regarding the fatty acid class, a higher percent area of the metabolite 8,11-eicosadienoic acid (27.04%) was observed in fish infected with V. vulnificus than in the control treatment group (22.5%). Meanwhile, in the carbohydrate class, glucose (47.0%) was the metabolite in the carbohydrate class present at highest percentage in the control treatment group compared to infected fish (30.0%). Our findings highlight the importance of a metabolic analysis for understanding the changes of metabolites in E. fuscoguttatus in response to bacterial infections.
    Matched MeSH terms: Animals
  10. Yusuf I, Ahmad SA, Phang LY, Yasid NA, Shukor MY
    3 Biotech, 2019 Jan;9(1):32.
    PMID: 30622870 DOI: 10.1007/s13205-018-1555-x
    The ability of gellan gum-immobilised cells of the heavy metal-tolerant bacterium Alcaligenes sp. AQ05-001 to utilise both heavy metal-free and heavy metal-polluted feathers (HMPFs) as substrates to produce keratinase enzyme was studied. Optimisation of the media pH, incubation temperature and immobilisation parameters (bead size, bead number, gellan gum concentration) was determined for the best possible production of keratinase using the one-factor-at-a-time technique. The results showed that the immobilised cells could tolerate a broader range of heavy metal concentrations and produced higher keratinase activity at a gellan gum concentration of 0.8% (w/v), a bead size of 3 mm, bead number of 250, pH of 8 and temperature of 30 °C. The entrapped bacterium was used repeatedly for ten cycles to produce keratinase using feathers polluted with 25 ppm of Co, Cu and Ag as substrates without the need for desorption. However, its inability to tolerate/utilise feathers polluted with Hg, Pb, and Zn above 5 ppm, and Ag and Cd above 10 ppm resulted in a considerable decrease in keratinase production. Furthermore, the immobilised cells could retain approximately 95% of their keratinase production capacity when 5 ppm of Co, Cu, and Ag, and 10 ppm of As and Cd were used to pollute feathers. When the feathers containing a mixture of Ag, Co, and Cu at 25 ppm each and Hg, Ni, Pb, and Zn at 5 ppm each were used as substrates, the immobilised cells maintained their operational stability and biological activity (keratinase production) at the end of 3rd and 4th cycles, respectively. The study indicates that HMPF can be effectively utilised as a substrate by the immobilised-cell system of Alcaligenes sp. AQ05-001 for the semi-continuous production of keratinase enzyme.
    Matched MeSH terms: Animals
  11. Aithal AP, Bairy LK, Seetharam RN, Kumar N
    3 Biotech, 2021 Feb;11(2):107.
    PMID: 33564610 DOI: 10.1007/s13205-021-02640-y
    Bone marrow mesenchymal stromal cells (BM-MSCs) are multipotent stem cells which are ideal candidates for use in regenerative medicine. The objectives of this study were to evaluate the hepatoprotective effect of BM-MSC and its combination treatment with silymarin in carbon tetrachloride (CCl4)-induced liver cirrhosis animal model and to investigate whether tail vein or portal vein infusion was the ideal route for BM-MSC transplantation. 36 female Wistar rats were randomly divided into six groups (n = 6): Group 1 (normal control), Group 2 (received only CCl4, disease model), Group 3 (CCl4 + BM-MSCs through tail vein), Group 4 (CCl4 + BM-MSCs through portal vein), Group 5 (CCl4 + silymarin), Group 6 (CCl4 + BM-MSCs + silymarin). On the 21st day after treatment, blood samples were collected for biochemical estimations. After the experiment, the rats were sacrificed. Liver was dissected out and processed for histopathology and scanning electron microscopy studies. Liver enzyme and marker analysis, histopathological studies indicated that the combination of BM-MSCs and silymarin was effective in treating liver cirrhosis. Transplanted BM-MSCs in combination with silymarin ameliorated the liver tissue damage through their immunoregulatory activities. Among the two routes, the intravenous administration of cells through the tail vein was found to be more effective and safe.
    Matched MeSH terms: Animals
  12. Amer Hamzah M, Mohd Kasim NA, Shamsuddin A, Mustafa N, Mohamad Rusli NI, Teh CY, et al.
    3 Biotech, 2020 Mar;10(3):105.
    PMID: 32099746 DOI: 10.1007/s13205-020-2092-y
    In this study, we analyzed the Rc and Rd genes that are responsible for the coloration of rice pericarps from six upland rice varieties. We also examined the association of pericarp coloration to the single nucleotide polymorphism in 9-cis-epoxycarotenoid dioxygenase 2 (NCED2), a key gene involved in abscisic acid (ABA) biosynthesis. Our findings demonstrated that all the upland rice varieties analyzed have a Rd gene which encodes a complete dihydroflavonol-4-reductase without early translational termination codon irrespective of their pericarp colors. However, the upland rice varieties with white pericarps were found to have a defective Rc gene with a 14-base deletion at exon 7 which could disrupt the function of a positive regulator of proanthocyanidin biosynthesis. In addition, the NCED2 genes from the upland rice varieties with white pericarps in this study have a C-allele while the NCED2 genes from Pandasan Red, Tomou and Taragang varieties that bear red pericarps were found to have a T-allele which was reported to be associated with a higher ABA level in upland rice. A better understanding of the gene sequences of upland rice varieties with red pericarp may provide important information for rice breeding programs.
    Matched MeSH terms: Animals
  13. Pern YC, Lee SY, Ng WL, Mohamed R
    3 Biotech, 2020 Mar;10(3):103.
    PMID: 32099744 DOI: 10.1007/s13205-020-2072-2
    Tree species in the Aquilarieae tribe of the Thymelaeaceae family produce agarwood, a natural product highly valued for its fragrance, but the species are under threat due to indiscriminate harvesting. For conservation of these species, molecular techniques such as DNA profiling have been used. In this study, we assessed cross-amplification of microsatellite markers, initially developed for three Aquilaria species (A.crassna, A.malaccensis, and A.sinensis), on ten other agarwood-producing species, including members of Aquilaria (A.beccariana, A.hirta, A.microcarpa, A.rostrata, A.rugosa, A.subintegra, and A.yunnanensis) and Gyrinops (G.caudata, G.versteegii, and G.walla), both from the Aquilarieae tribe. Primers for 18 out of the 30 microsatellite markers successfully amplified bands of expected sizes in 1 sample each of at least 10 species. These were further used to genotype 74 individuals representing all the 13 studied species, yielding 13 cross-amplifiable markers, of which only 1 being polymorphic across all species. At each locus, the number of alleles ranged from 7 to 23, indicating a rather high variability. Four markers had relatively high species discrimination power. Our results demonstrated that genetic fingerprinting can be an effective tool in helping to manage agarwood genetic resources by potentially supporting the chain-of-custody of agarwood and its products in the market.
    Matched MeSH terms: Animals
  14. Adzitey F, Huda N, Ali GR
    3 Biotech, 2013 Apr;3(2):97-107.
    PMID: 28324565 DOI: 10.1007/s13205-012-0074-4
    In recent times, several foodborne pathogens have become important and a threat to public health. Surveillance studies have provided data and a better understanding into the existence and spread of foodborne pathogens. The application of molecular techniques for detecting and typing of foodborne pathogens in surveillance studies provide reliable epidemiological data for tracing the source of human infections. A wide range of molecular techniques (including pulsed field gel electrophoresis, multilocus sequence typing, random amplified polymorphism deoxyribonucleic acid, repetitive extragenic palindromic, deoxyribonucleic acid sequencing, multiplex polymerase chain reaction and many more) have been used for detecting, speciating, typing, classifying and/or characterizing foodborne pathogens of great significance to humans. Farm animals including chickens, cattle, sheep, goats and pigs, and others (such as domestic and wild animals) have been reported to be primary reservoirs for foodborne pathogens. The consumption of contaminated poultry meats or products has been considered to be the leading source of human foodborne infections. Ducks like other farm animals are important source of foodborne pathogens and have been implicated in some human foodborne illnesses and deaths. Nonetheless, few studies have been conducted to explore the potential of ducks in causing foodborne outbreaks, diseases and its consequences. This review highlights some common molecular techniques, their advantages and those that have been applied to pathogens isolated from ducks and their related sources.
    Matched MeSH terms: Animals; Animals, Domestic; Animals, Wild
  15. Jeevanandam J, Chan YS, Danquah MK
    3 Biotech, 2020 Nov;10(11):489.
    PMID: 33123456 DOI: 10.1007/s13205-020-02480-2
    The present study investigates the cytotoxicity of hexagonal MgO nanoparticles synthesized via Amaranthus tricolor leaf extract and spherical MgO nanoparticles synthesized via Amaranthus blitum and Andrographis paniculata leaf extracts. In vitro cytotoxicity analysis showed that the hexagonal MgO nanoparticles synthesized from A. tricolor extract demonstrated the least toxicity to both diabetic and non-diabetic cells at 600 μl/ml dosage. The viability of the diabetic cells (3T3-L1) after incubation with varying dosages of MgO nanoparticles was observed to be 55.3%. The viability of normal VERO cells was 86.6% and this stabilized to about 75% even after exposure to MgO nanoparticles dosage of up to 1000 μl/ml. Colorimetric glucose assay revealed that the A. tricolor extract synthesized MgO nanoparticles resulted in ~ 28% insulin resistance reversal. A reduction in the expression of GLUT4 protein at 54 KDa after MgO nanopaSrticles incubation with diabetic cells was observed via western blot analysis to confirm insulin reversal ability. Fluorescence microscopic analysis with propidium iodide and acridine orange dyes showed the release of reactive oxygen species as a possible mechanism of the cytotoxic effect of MgO nanoparticles. It was inferred that the synergistic effect of the phytochemicals and MgO nanoparticles played a significant role in delivering enhanced insulin resistance reversal capability in adipose cells.
    Matched MeSH terms: Animals
  16. Basirun AA, Ahmad SA, Sabullah MK, Yasid NA, Daud HM, Khalid A, et al.
    3 Biotech, 2019 Feb;9(2):64.
    PMID: 30729088 DOI: 10.1007/s13205-019-1592-0
    The present study is aimed to evaluate the effects of sub-acute toxicity testing of copper sulphate (CuSO4), on behavioural, histological and biochemical changes of the Oreochromis mossambicus (black tilapia) blood tissues. The effects were assessed according to the previous results on sub-acute toxicity test after exposing fish to several concentrations (0.0, 2.5, 5.0, and 10.0 mg/L). The observations of scanning electron microscope, and transmission electron microscope studies revealed severe histopathological changes on the surface and the cellular changes in blood tissues, respectively. The morphological alterations in blood involved irregular structure of red blood cell and blood clot formation. CuSO4 affected the biochemical alteration of the blood cholinesterase also known as serum cholinesterase (ChE). Blood ChE inhibited up to 80% of activity when exposed to 10.0 mg/L CuSO4. The findings from this study can further improve the quality standards of aquaculture industry and the fundamental basis in selecting suitable strains among freshwater fish species to be used as bioindicator.
    Matched MeSH terms: Animals
  17. Saeed OA, Kee LT, Sazili AQ, Akit H, Jahromi MF, Alimon AR, et al.
    3 Biotech, 2019 Apr;9(4):146.
    PMID: 30944793 DOI: 10.1007/s13205-019-1681-0
    This study aimed to determine influence of corn inclusion on glutathion peroxidase (GPx) activity, selected minerals concentration, and gene expression in sheep-fed palm kernel cake (PKC) and urea-treated rice straw. Twenty-seven of Dorper sheep were divided into three groups and fed a basal diet of (20% rice straw and 80% concentrate) with addition of ground corn at either 0% (T1), 5% (T2), or 10% (T3), respectively. After 120 days feeding trial, all animals were slaughtered and tissue samples of kidney, liver, and muscles were taken for enzyme and mineral analyses. The results showed that Cu concentration in the liver was lower treatment T3 compared to the control and T2. The serum activity of GPx was higher in T2 than in T3 at day 120 of experiment. Serum malondialdehyde (MDA) concentrations decreased at day 80 in sheep on T3, whereas MDA of liver increased linearly with increasing corn supplementation. The qRT-PCR analyses revealed significant up-regulation of ATP7A and MIa genes in T3, while hepatic Cu/Zn SOD, GPx1, and GPx4 mRNA showed a higher expression in lamb hepatocytes in T3 compared to those on T1. Present study results suggest that feeding PKC as basal diet can increase antioxidant activity, but cause liver dysfunction in sheep. Inclusion corn was found to regulate transcriptional levels of the GPx family and metallothionein genes. These genes may play a role in the antioxidant protection response and reduce incidence of toxicity associated with Cu.
    Matched MeSH terms: Animals
  18. Palanyandy SR, Gantait S, Subramaniam S, Sinniah UR
    3 Biotech, 2020 Jan;10(1):9.
    PMID: 31850156 DOI: 10.1007/s13205-019-1997-9
    The current report assesses the efficiency of encapsulation-desiccation protocol to cryopreserve oil palm (Elaeis guineensis Jacq.) polyembryoids. Specifically identified polyembryoids, comprising of haustorium and torpedo-shaped structures, were encapsulated [comprising 3% (w/v) sodium alginate and 100 mM CaCl2]. Calcium alginate-encapsulated and sucrose-precultured polyembryoids were subjected to different spans of desiccation in a laminar air-flow cabinet, followed by freezing in liquid nitrogen. The effect of sucrose preculture (with gradual exposure to 0.3, 0.5, 0.75 and 1 M for 7 days) and dehydration periods (0-10 h) under sterile air-flow on post-freezing survival and regrowth of encapsulated polyembryoids were studied. Cryopreserved and thawed polyembryoids (initially precultured in sucrose, followed by 9 h air-desiccated to 23.3% moisture content) displayed the highest survival percentage (73.3%) and regeneration (of shoot, root and secondary somatic embryo) on Murashige and Skoog regrowth medium containing sucrose (0.3-1 M) and 0.2 mg/l 2,4-dichlorophenoxy acetic acid. In addition, ultrastructural study using scanning electron microscopy exhibited successful revival of cryopreserved polyembryoids, owing to retention of cellular membrane stability through optimized and protected (encapsulated) desiccation. The present study thus substantiates the potential of this encapsulation-desiccation procedure in cryopreservation of oil palm polyembryoids for long-term conservation programs.
    Matched MeSH terms: Animals
  19. Nayak AG, Kumar N, Shenoy S, Roche M
    3 Biotech, 2021 May;11(5):228.
    PMID: 33959471 DOI: 10.1007/s13205-021-02766-z
    Increasing evidence suggests a sizable involvement of hemotoxins in the morbidity associated with envenomation by the Indian spectacled cobra, Naja naja (N.N). This study investigates the ability of Indian polyvalent anti-snake venom (ASV), methanolic extract of Andrographis paniculata (MAP) and their combination in reversing the hemostatic abnormalities, viz. activated partial thromboplastin time(aPTT), prothrombin time(PT) and thrombin time(TT) in citrated plasma. These parameters were assessed in 2 groups of experiments. Group 1: Without the prior incubation of plasma with venom and Group 2: With prior incubation of plasma with venom for 90 min at 37°C. Venom caused significant (p 
    Matched MeSH terms: Animals
  20. Chilakamarry CR, Mahmood S, Saffe SNBM, Arifin MAB, Gupta A, Sikkandar MY, et al.
    3 Biotech, 2021 May;11(5):220.
    PMID: 33968565 DOI: 10.1007/s13205-021-02734-7
    Over recent years, keratin has gained great popularity due to its exceptional biocompatible and biodegradable nature. It has shown promising results in various industries like poultry, textile, agriculture, cosmetics, and pharmaceutical. Keratin is a multipurpose biopolymer that has been used in the production of fibrous composites, and with necessary modifications, it can be developed into gels, films, nanoparticles, and microparticles. Its stability against enzymatic degradation and unique biocompatibility has found their way into biomedical applications and regenerative medicine. This review discusses the structure of keratin, its classification and its properties. It also covers various methods by which keratin is extracted like chemical hydrolysis, enzymatic and microbial treatment, dissolution in ionic liquids, microwave irradiation, steam explosion technique, and thermal hydrolysis or superheated process. Special emphasis is placed on its utilisation in the form of hydrogels, films, fibres, sponges, and scaffolds in various biotechnological and industrial sectors. The present review can be noteworthy for the researchers working on natural protein and related usage.
    Matched MeSH terms: Animals
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links