Displaying publications 1 - 20 of 709 in total

Abstract:
Sort:
  1. Ng SF, Anuwi NA, Tengku-Ahmad TN
    AAPS PharmSciTech, 2015 Jun;16(3):656-63.
    PMID: 25511806 DOI: 10.1208/s12249-014-0248-y
    Hydrocortisone cream intended for atopic eczema often produces unwanted side effects after long-term use. These side effects are essentially due to repeated percutaneous administration of the medication for skin dermatitis, as atopic eczema is a relapsing disorder. Hence, there is a need to develop a new hydrocortisone formulation that will deliver the drug more effectively and require a reduced dosing frequency; therefore, the side effects could be minimized. In this study, a hydroxypropyl methylcellulose (HPMC) lyogel system based on 80% organic and 20% aqueous solvents containing 1% hydrocortisone was formulated. The hydrocortisone lyogel physicochemical characteristics, rheological properties, stability profile, and in vitro Franz cell drug release properties, as well as the in vivo therapeutic efficacies and dermal irritancy in Balb/c mice were investigated. The HPMC lyogel appeared clear and soft and was easy to rub on the skin. The lyogel also showed a higher drug release profile compared with commercial hydrocortisone cream. Similar to the cream, HPMC lyogels exhibited pseudoplastic behavior. From the mouse model, the hydrocortisone lyogel showed higher inflammatory suppressive effects than the cream. However, it did not reduce the transepidermal water loss as effectively as the control did. The dermal irritancy testing revealed that the hydrocortisone lyogel caused minimal irritation. In conclusion, HPMC lyogel is a promising vehicle to deliver hydrocortisone topically, as it showed a higher drug release in vitro as well as enhanced therapeutic efficacy in resolving eczematous inflammatory reaction compared with commercial cream.
    Matched MeSH terms: Anti-Inflammatory Agents/administration & dosage; Anti-Inflammatory Agents/immunology
  2. Ahmad K, Win T, Jaffri JM, Edueng K, Taher M
    AAPS PharmSciTech, 2018 Jan;19(1):371-383.
    PMID: 28744617 DOI: 10.1208/s12249-017-0843-9
    This study aims to investigate the use of palm olein as the oil phase for betamethasone 17-valerate (BV) emulsions. The physicochemical properties of the formulations were characterized. In vitro drug release study was performed with the Hanson Vertical Diffusion Cell System; the samples were quantified with HPLC and the results were compared with commercial products. Optimized emulsion formulations were subjected to stability studies for 3 months at temperatures of 4, 25, and 40°C; the betamethasone 17-valerate content was analyzed using HPLC. The formulations produced mean particle size of 2-4 μm, viscosities of 50-250 mPa.s, and zeta potential between -45 and -68 mV. The rheological analyses showed that the emulsions exhibited pseudoplastic and viscoelastic behavior. The in vitro release of BV from palm olein emulsion through cellulose acetate was 4.5 times higher than that of commercial products and more BV molecules deposited in rat skin. Less than 4% of the drug was degraded in the formulations during the 3-month period when they were subjected to the three different temperatures. These findings indicate that palm olein-in-water emulsion can be an alternative vehicle for topical drug delivery system with superior permeability.
    Matched MeSH terms: Anti-Inflammatory Agents/administration & dosage*; Anti-Inflammatory Agents/chemistry*
  3. Rajendran K, Anwar A, Khan NA, Aslam Z, Raza Shah M, Siddiqui R
    ACS Chem Neurosci, 2020 08 19;11(16):2431-2437.
    PMID: 31347828 DOI: 10.1021/acschemneuro.9b00289
    Naegleria fowleri (N. fowleri) causes primary amoebic meningoencephalitis (PAM) which almost always results in death. N. fowleri is also known as "brain-eating amoeba" due to its literal infestation of the brain leading to an inflammatory response in the brain tissues. Currently, there is no single drug that is available to treat PAM, and most treatments are combinations of antifungal, anticancer, and anti-inflammatory drugs. Recently nanotechnology has gained attention in chemotherapeutic research converging on drug delivery, while oleic acid (OA) has shown positive effects on the human immune system and inflammatory processes. In continuation of our recent research in which we reported the effects of oleic acid conjugated with silver nanoparticles (OA-AgNPs) against free-living amoeba Acanthamoeba castellanii, in this report, we show their antiamoebic effects against N. fowleri. OA alone and its nanoconjugates were tested against the amoeba by using amoebicidal and host cell cytopathogenicity assays. Trypan blue exclusion assay was used to determine cell viability. The results revealed that OA-AgNPs exhibited significantly enhanced antiamoebic effects (P < 0.05) against N. fowleri as compared to OA alone. Evidently, lactate dehydrogenase release shows reduced N. fowleri-mediated host cell cytotoxicity. Based on our study, we anticipate that further studies on OA-AgNPs could potentially provide an alternative treatment of PAM.
    Matched MeSH terms: Anti-Inflammatory Agents
  4. Paudel YN, Angelopoulou E, Semple B, Piperi C, Othman I, Shaikh MF
    ACS Chem Neurosci, 2020 02 19;11(4):485-500.
    PMID: 31972087 DOI: 10.1021/acschemneuro.9b00640
    Glycyrrhizin (glycyrrhizic acid), a bioactive triterpenoid saponin constituent of Glycyrrhiza glabra, is a traditional medicine possessing a plethora of pharmacological anti-inflammatory, antioxidant, antimicrobial, and antiaging properties. It is a known pharmacological inhibitor of high mobility group box 1 (HMGB1), a ubiquitous protein with proinflammatory cytokine-like activity. HMGB1 has been implicated in an array of inflammatory diseases when released extracellularly, mainly by activating intracellular signaling upon binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). HMGB1 neutralization strategies have demonstrated disease-modifying outcomes in several preclinical models of neurological disorders. Herein, we reveal the potential neuroprotective effects of glycyrrhizin against several neurological disorders. Emerging findings demonstrate the therapeutic potential of glycyrrhizin against several HMGB1-mediated pathological conditions including traumatic brain injury, neuroinflammation and associated conditions, epileptic seizures, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Glycyrrhizin's effects in neurological disorders are mainly attributed to the attenuation of neuronal damage by inhibiting HMGB1 expression and translocation as well as by downregulating the expression of inflammatory cytokines. A large number of preclinical findings supports the notion that glycyrrhizin might be a promising therapeutic alternative to overcome the shortcomings of the mainstream therapeutic strategies against neurological disorders, mainly by halting disease progression. However, future research is warranted for a deeper exploration of the precise underlying molecular mechanism as well as for clinical translation.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  5. Akyuz E, Kullu I, Arulsamy A, Shaikh MF
    ACS Chem Neurosci, 2021 04 21;12(8):1281-1292.
    PMID: 33813829 DOI: 10.1021/acschemneuro.1c00083
    Epilepsy is a result of unprovoked, uncontrollable, and repetitive outburst of abnormal and excessive electrical discharges, known as seizures, in the neurons. Epilepsy is a devastating neurological condition that affects 70 million people globally. Unfortunately, only two-thirds of epilepsy patients respond to antiepileptic drugs while others become drug resistant and may be more prone to epilepsy comorbidities such as SUDEP. Oxidative stress, mitochondrial dysfunction, imbalance in the excitatory and inhibitory neurotransmitters, and neuroinflammation are some of the common pathologies of neurological disorders and epilepsy. Studies suggests that melatonin, a pineal hormone that governs sleep-wake cycles, may be neuroprotective against neurological disorders and thus may be translated as an antiepileptic as well. Melatonin has been shown to be an antioxidant, antiexcitotoxic, and anti-inflammatory hormone/molecule in neurodegenerative diseases, which may contribute to its antiepileptic and neuroprotective properties in epilepsy as well. In addition, melatonin has evidently been shown to play a regulatory role in the cardiorespiratory system and sleep-wake cycles, which may have positive implications toward epilepsy associated comorbidities, such as SUDEP. However, studies investigating the changes in melatonin release due to epilepsy and melatonin's antiepileptic role have been inconclusive and scarce, respectively. Thus, this comprehensive review aims to summarize and elucidate the potential role of melatonin in the pathogenesis of epilepsy and its comorbidities, in hopes to develop new diagnostic and therapeutic approaches that will improve the lives of epileptic patients, particularly those who are drug resistant.
    Matched MeSH terms: Anti-Inflammatory Agents
  6. Lum PT, Sekar M, Gan SH, Bonam SR, Shaikh MF
    ACS Chem Neurosci, 2021 Feb 03;12(3):391-418.
    PMID: 33475334 DOI: 10.1021/acschemneuro.0c00824
    Huntington's disease (HD), a neurodegenerative disease, normally starts in the prime of adult life, followed by a gradual occurrence of characteristic psychiatric disturbances and cognitive and motor dysfunction. To the best of our knowledge, there is no treatment available to completely mitigate the progression of HD. Among various therapeutic approaches, exhaustive literature reports have confirmed the medicinal benefits of natural products in HD experimental models. Building on this information, this review presents a brief overview of the neuroprotective mechanism(s) of natural products against in vitro/in vivo models of HD. Relevant studies were identified from several scientific databases, including PubMed, ScienceDirect, Scopus, and Google Scholar. After screening through literature from 2005 to the present, a total of 14 medicinal plant species and 30 naturally isolated compounds investigated against HD based on either in vitro or in vivo models were included in the present review. Behavioral outcomes in the HD in vivo model showed that natural compounds significantly attenuated 3-nitropropionic acid (3-NP) induced memory loss and motor incoordination. The biochemical alteration has been markedly alleviated with reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and increased mitochondrial energy production. Interestingly, following treatment with certain natural products, 3-NP-induced damage in the striatum was ameliorated, as seen histologically. Overall, natural products afforded varying degrees of neuroprotection in preclinical studies of HD via antioxidant and anti-inflammatory properties, preservation of mitochondrial function, inhibition of apoptosis, and induction of autophagy.
    Matched MeSH terms: Anti-Inflammatory Agents
  7. Sivaramakarthikeyan R, Iniyaval S, Saravanan V, Lim WM, Mai CW, Ramalingan C
    ACS Omega, 2020 May 05;5(17):10089-10098.
    PMID: 32391496 DOI: 10.1021/acsomega.0c00630
    Synthesis of a series of benzimidazole-ornamented pyrazoles, 6a-6j has been obtained from arylhydrazine and aralkyl ketones via a multistep synthetic strategy. Among them, a hybrid-possessing para-nitrophenyl moiety connected to a pyrazole scaffold (6a) exerted the highest anti-inflammatory activity, which is superior to the standard, diclofenac sodium. While executing the 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity, a hybrid-possessing para-bromophenyl unit integrated at the pyrazole structural motif (6i) exhibited the highest activity among the hybrids examined. Besides, evaluation of anticancer potency of the synthesized hybrids revealed that the one containing a para-fluorophenyl unit tethered at the pyrazole nucleus (6h) showed the highest activity against both the pancreatic cancer cells (SW1990 and AsPCl) investigated. Considerable binding affinity between B-cell lymphoma and the hybrid, 6h has been reflected while performing molecular docking studies (-8.65 kcal/mol). The outcomes of the investigation expose that these hybrids could be used as effective intermediates to construct more potent biological agents.
    Matched MeSH terms: Anti-Inflammatory Agents
  8. Mohd Shahrir MS, Eashwary M, Heselynn H, Mohd Shahdan S
    DOI: 10.1111/j.1479-8077.2007.00252.x
    Aim: To provide the first case series analysis for psoriatic arthritis (PsA) in Malaysia.
    Methods: Patient records were studied from rheumatology clinics in Universiti Kebangsaan Malaysia Hospital and Putrajaya Hospital in Malaysia.
    Results: Thirty-one patients from two rheumatology centres were studied. Thirteen patients (41.9%) were male and 18 patients (58.1%) were female. Nineteen patients (61.3%) were Malays, four (12.9%) were Chinese, seven (22.6%) were Indians and one (3.2%) was a Sikh. The majority of patients were in the >.50 years age-group (11 [35.5%]) followed by the 41-50 years age-group (10 [32.3%]). Thirteen patients (41.9%) had the disease since 41-50 years of age. Twenty-three patients (77.4%) had no family history of PsA. Twenty-three patients (74.2%) had psoriasis first, seven (22.6%) had arthritis first and one (3.2%) developed psoriasis and arthritis at the same time. Twenty-four patients (77.4%) had positive activity correlation for skin and arthritis. The majority of patients had symmetrical arthritis (20 [64.5%]) and chronic plaque-like lesions (22 [71.0%]). These patients were on NSAIDS and methotrexate (14 [45.2%]). One patient (3.6%) needed surgery for joint replacement.
    Conclusion: Patients who were diagnosed as having PsA were Malays, age group of more than 50, disease onset at 41-50 years of age, no family history, had symmetrical and chronic plaque lesions, had psoriasis first and needed NSAIDS and methotrexate.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal
  9. Akhavan Hejazi SM, Mazlan M
    Acta Med Iran, 2012;50(4):292-4.
    PMID: 22592581
    Post-stroke shoulder pain is associated with either a peripheral or central pathology. However, most of the time, it is challenging to establish a cause-and-effect relationship between the suggested pathology and shoulder pain reported. We report a 66 year-old man who developed a right hemiplegic shoulder pain two months post stroke with initial investigations suggestive of peripheral pathologies. Pharmacological and non-pharmacological treatment did not improve his shoulder pain. Later he developed complex regional pain syndrome (CRPS) of the right hand and the initial shoulder pain subsequently relieved following resolution of the CRPS.
    Matched MeSH terms: Anti-Inflammatory Agents/therapeutic use
  10. Dua K, Pabreja K, Ramana MV
    Acta Pharm, 2010 Dec;60(4):467-78.
    PMID: 21169138 DOI: 10.2478/v1007-010-0036-5
    Aceclofenac is a new generation non-steroidal anti-inflammatory drug showing effective anti-inflammatory and analgesic properties. It is available in the form of tablets of 100 mg. Importance of aceclofenac as a NSAID has inspired development of topical dosage forms. This mode of administration may help avoid typical side effects associated with oral administration of NSAIDs, which have led to its withdrawal. Furthermore, aceclofenac topical dosage forms can be used as a supplement to oral therapy for better treatment of conditions such as arthritis. Ointments, creams, and gels containing 1% (m/m) aceclofenac have been prepared. They were tested for physical appearance, pH, spreadability, extrudability, drug content uniformity, in vitro diffusion and in vitro permeation. Gels prepared using Carbopol 940 (AF2, AF3) and macrogol bases (AF7) were selected after the analysis of the results. They were evaluated for acute skin irritancy, anti-inflammatory and analgesic effects using the carrageenan-induced thermal hyperalgesia and paw edema method. AF2 was shown to be significantly (p < 0.05) more effective in inhibiting hyperalgesia associated with inflammation, compared to AF3 and AF7. Hence, AF2 may be suggested as an alternative to oral preparations.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/administration & dosage*; Anti-Inflammatory Agents, Non-Steroidal/toxicity; Anti-Inflammatory Agents, Non-Steroidal/chemistry
  11. Woolley AK, Hedger NA, Veettil RP
    Acute Med, 2013;12(2):107-10.
    PMID: 23732136
    Pyrexia of unknown origin (PUO) is a frequent presentation to the Acute Medical Unit, and is a source of significant morbidity, both the psychological burden of an uncertain diagnosis and prognosis and untreated complications of the underlying pathology. We present a problem based review of the management of PUO, illustrated by a patient who recently presented to our unit with fever and systemic malaise after returning from abroad and in whom no cause could be found for more than two months. We describe a structured approach making use of complex modern techniques such as Positron Emission Tomography-Computed Tomography (PET-CT) which ultimately provided the diagnosis for our patient.
    Matched MeSH terms: Anti-Inflammatory Agents/therapeutic use
  12. Somchit MN, Sanat F, Hui GE, Wahab SI, Ahmad Z
    Adv Pharm Bull, 2014 Dec;4(4):401-4.
    PMID: 25436198 DOI: 10.5681/apb.2014.059
    PURPOSE: Nonsteroidal anti-inflammatory drugs (NSAIDs) are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model.

    METHODS: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil) or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day). Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN) and creatinine activities were measured.

    RESULTS: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine.

    CONCLUSION: RESULTS from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal
  13. Chin KY, Pang KL, Soelaiman IN
    Adv Exp Med Biol, 2016;928:97-130.
    PMID: 27671814
    Tocotrienol is a member of vitamin E family and is well-known for its antioxidant and anti-inflammatory properties. It is also a suppressor of mevalonate pathway responsible for cholesterol and prenylated protein synthesis. This review aimed to discuss the health beneficial effects of tocotrienol, specifically in preventing or treating hyperlipidaemia, diabetes mellitus, osteoporosis and cancer with respect to these properties. Evidence from in vitro, in vivo and human studies has been examined. It is revealed that tocotrienol shows promising effects in preventing or treating the health conditions previously mentioned in in vivo and in vitro models. In some cases, alpha-tocopherol attenuates the biological activity of tocotrienol. Except for its cholesterol-lowering effects, data on the health-promoting effects of tocotrienol in human are limited. As a conclusion, the encouraging results on the health beneficial effects of tocotrienol should motivate researchers to explore its potential use in human.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  14. Mohd Yusof YA
    Adv Exp Med Biol, 2016;929:177-207.
    PMID: 27771925
    Since antiquity, ginger or Zingiber officinale, has been used by humans for medicinal purposes and as spice condiments to enhance flavor in cooking. Ginger contains many phenolic compounds such as gingerol, shogaol and paradol that exhibit antioxidant, anti-tumor and anti-inflammatory properties. The role of ginger and its constituents in ameliorating diseases has been the focus of study in the past two decades by many researchers who provide strong scientific evidence of its health benefit. This review discusses research findings and works devoted to gingerols, the major pungent constituent of ginger, in modulating and targeting signaling pathways with subsequent changes that ameliorate, reverse or prevent chronic diseases in human studies and animal models. The physical, chemical and biological properties of gingerols are also described. The use of ginger and especially gingerols as medicinal food derivative appears to be safe in treating or preventing chronic diseases which will benefit the common population, clinicians, patients, researchers, students and industrialists.
    Matched MeSH terms: Anti-Inflammatory Agents/isolation & purification; Anti-Inflammatory Agents/therapeutic use*; Anti-Inflammatory Agents/chemistry
  15. Aizzat O, Yap SW, Sopiah H, Madiha MM, Hazreen M, Shailah A, et al.
    Adv Med Sci, 2010;55(2):281-8.
    PMID: 21147697 DOI: 10.2478/v10039-010-0046-z
    Chlorella vulgaris (CV), a fresh water alga has been reported to have hypoglycemic effects. However, antioxidant and anti-inflammatory effects of CV in diabetic animals have not been investigated to date. The aim of the present study was to investigate the role of CV in inflammation and oxidative damage in STZ-induced diabetic rats.
    Matched MeSH terms: Anti-Inflammatory Agents/therapeutic use*; Anti-Inflammatory Agents/chemistry
  16. Wong RSY
    Adv Pharmacol Sci, 2019;2019:5324170.
    PMID: 30838041 DOI: 10.1155/2019/5324170
    Spondyloarthritis or spondyloarthropathy (SpA) is a group of related rheumatic disorders, which presents with axial and nonaxial features, affecting structures within the musculoskeletal system, as well as other bodily systems. Both pharmacological and nonpharmacological therapeutic options are available for SpA. For decades, nonsteroidal anti-inflammatory drugs (NSAIDs) have been used as the first-line drugs to treat the disease. Research has shown that other than pain relief, NSAIDs have disease-modifying effects in SpA. However, to achieve these effects, continuous and/or long-term NSAID use is usually required. This review will give an overview of SpA, discuss NSAIDs and their disease-modifying effects in SpA, and highlight some of the important adverse effects of long-term and continuous NSAID use, particularly those related to the gastrointestinal, renal, and cardiovascular systems.
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal
  17. Wong RSY
    Adv Pharmacol Sci, 2019;2019:3418975.
    PMID: 30838040 DOI: 10.1155/2019/3418975
    The nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed by medical practitioners in many clinical conditions for the symptomatic treatment of pain and fever. Due to their anti-inflammatory properties, these drugs have been investigated for their anticancer effects in numerous studies. This is because chronic inflammation has long been linked to carcinogenesis. As such, anti-inflammatory drugs are believed to play a role in cancer treatment and prevention. In the past few decades, research has shown that NSAIDs may decrease the risk of certain types of cancer. However, there is also a growing body of research that proves the contrary. Furthermore, NSAIDs are well known for many side effects, including some life-threatening ones. This review will discuss the relationship between chronic inflammation and cancer, the role of NSAIDs in cancer prevention and cancer promotion, and some of the potentially lethal side effects of these drugs.
    Matched MeSH terms: Anti-Inflammatory Agents; Anti-Inflammatory Agents, Non-Steroidal
  18. Wen WX, Lee SY, Siang R, Koh RY
    Adv Ther, 2017 06;34(6):1245-1269.
    PMID: 28484954 DOI: 10.1007/s12325-017-0547-2
    Fibrosis is a potentially debilitating disease with high morbidity rates. It is estimated that half of all deaths that occur in the USA are attributed to fibrotic disorders. Fibrotic disorders are characterized primarily by disruption in the extracellular matrix deposition and breakdown equilibrium, leading to the accumulation of excessive amounts of extracellular matrix. Given the potentially high prevalence of fibrosis and the paucity of agents currently available for the treatment of this disease, there is an urgent need for the identification of drugs that can be utilized to treat the disease. Pentoxifylline is a methylxanthine derivative that is currently approved for the treatment of vascular diseases, in particular, claudication. Pentoxifylline has three main properties: improving the rheological properties of blood, anti-inflammatory, and antioxidative. Recently, the effectiveness of pentoxifylline in the treatment of fibrosis via attenuating and reversing fibrotic lesions has been demonstrated in several clinical trials and animal studies. As a result of the limited availability of antifibrotic agents in the long-term treatment of fibrosis that can attenuate and even reverse fibrotic lesions effectively, it would be of particular importance to consider the potential clinical utility of pentoxifylline in the treatment of fibrosis. Thus, this paper discusses the evolving roles of pentoxifylline in the treatment of different types of fibrosis.
    Matched MeSH terms: Anti-Inflammatory Agents/therapeutic use
  19. Yeap SS, Tanavalee A, Perez EC, Tan MP, Reyes BHM, Lee JK, et al.
    Aging Clin Exp Res, 2021 May;33(5):1149-1156.
    PMID: 33774784 DOI: 10.1007/s40520-021-01834-x
    BACKGROUND: Since 2014, the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) algorithm for the management of knee osteoarthritis (OA) is available worldwide.

    AIM: Based on this document, a Southeast Asia Working Group (SEAWG) wished to see how the new ESCEO algorithm developed in 2019 was perceived by Southeast Asian experts and how it was integrated into their clinical practice.

    METHODS: A SEAWG was set up between members of the international ESCEO task force and a group of Southeast Asian experts.

    RESULTS: Non-pharmacological management should always be combined with pharmacological management. In step 1, symptomatic slow-acting drugs for osteoarthritis are the main background therapy, for which high-quality evidence is available only for the formulations of patented crystalline glucosamine sulfate and chondroitin sulfate. In step 2, oral NSAIDs are a useful option, considering the cardiovascular/renal/gastrointestinal profiles of the individual patient. Intra-articular hyaluronic acid and corticosteroids are a possible alternative to oral NSAIDs, but limited evidence is available. If steps 1 and 2 do not give adequate relief of symptoms, tramadol can be used, but its safety is debated. In general, the indications of the ESCEO algorithm are important in Southeast Asian countries, but the reimbursement criteria of local health systems are an important aspect for adherence to the ESCEO algorithm.

    CONCLUSION: This guidance provides evidence-based and easy-to-follow advice on how to establish a treatment algorithm in knee OA, for practical implementation in clinical practice in Southeast Asian countries.

    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
  20. Goh KL, Chan WK
    Aliment Pharmacol Ther, 2012 Aug;36(3):291-2; discussion 292-3.
    PMID: 22747451 DOI: 10.1111/j.1365-2036.2012.05164.x
    Matched MeSH terms: Anti-Inflammatory Agents, Non-Steroidal/adverse effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links