Displaying publications 1 - 20 of 63 in total

Abstract:
Sort:
  1. Yang F, Guo GZ, Chen JQ, Ma HW, Liu T, Huang DN, et al.
    Epidemiol Infect, 2014 Feb;142(2):225-33.
    PMID: 23587429 DOI: 10.1017/S0950268813000897
    A suspected dengue fever outbreak occurred in 2010 at a solitary construction site in Shenzhen city, China. To investigate this epidemic, we used serological, molecular biological, and bioinformatics techniques. Of nine serum samples from suspected patients, we detected seven positive for dengue virus (DENV) antibodies, eight for DENV-1 RNA, and three containing live viruses. The isolated virus, SZ1029 strain, was sequenced and confirmed as DENV-1, showing the highest E-gene homology to D1/Malaysia/36000/05 and SG(EHI)DED142808 strains recently reported in Southeast Asia. Further phylogenetic tree analysis confirmed their close relationship. At the epidemic site, we also detected 14 asymptomatic co-workers (out of 291) positive for DENV antibody, and DENV-1-positive mosquitoes. Thus, we concluded that DENV-1 caused the first local dengue fever outbreak in Shenzhen. Because no imported case was identified, the molecular fingerprints of the SZ1029 strain suggest this outbreak may be due to vertical transmission imported from Southeast Asia.
    Matched MeSH terms: Antibodies, Viral/immunology
  2. Lim SH, Jahanshiri F, Jalilian FA, Rahim RA, Sekawi Z, Yusoff K
    Acta Virol., 2010;54(3):181-7.
    PMID: 20822310
    Human respiratory syncytial virus (HRSV) is a leading pathogen causing lower respiratory tract infections in infants and young children worldwide. In line with the development of an effective vaccine against HRSV, a domain of the fusion (F) glycoprotein of HRSV was produced and its immunogenicity and antigenic properties, namely the effect of deficient glycosylation was examined. A His-tagged recombinant F (rF) protein was expressed in Escherichia coli, solubilized with 8 mol/l urea, purified by the Ni-NTA affinity chromatography and used for the raising of a polyclonal antibody in rabbits. The non-glycosylated rF protein proved to be a strong immunogen that induced a polyclonal antibody that was able to recognize also the glycosylated F1 subunit of native HRSV. The other way around, a polyclonal antibody prepared against the native HRSV was able to react with the rF protein. These results indicated that glycosylation was not necessary for the F domain aa 212-574 in order to be recognized by the specific polyclonal antibody.
    Matched MeSH terms: Antibodies, Viral/immunology*
  3. Moeini H, Omar AR, Rahim RA, Yusoff K
    Virol J, 2011;8:119.
    PMID: 21401953 DOI: 10.1186/1743-422X-8-119
    Studies have shown that the VP22 gene of Marek's Disease Virus type-1 (MDV-1) has the property of movement between cells from the original cell of expression into the neighboring cells. The ability to facilitate the spreading of the linked proteins was used to improve the potency of the constructed DNA vaccines against chicken anemia virus (CAV).
    Matched MeSH terms: Antibodies, Viral/immunology
  4. Rabu A, Tan WS, Kho CL, Omar AR, Yusoff K
    Acta Virol., 2002;46(4):211-7.
    PMID: 12693857
    The nucleocapsid (NP) protein of Newcastle disease virus (NDV) self-assembled in Escherichia coli as ring-like and herringbone-like particles. Several chimeric NP proteins were constructed in which the antigenic regions of the hemagglutinin-neuraminidase (HN) and fusion (F) proteins of NDV, myc epitope, and six histidines (a hexa-His tag) were linked to the C-terminus of the NP monomer. These chimeric proteins were expressed efficiently in soluble form in E. coli as detected by Western blot analysis. Electron microscopy of the purified products revealed that they self-assembled into ring-like particles. These chimeric particles exhibited antigenicity of the myc epitope, suggesting that the foreign sequences were exposed on the surface of the particles. Chickens inoculated with the chimeric particles mounted an immune response against NDV, suggesting the possibility of use of the ring-like particle as a carrier of immunogens in subunit vaccines and immunological reagents.
    Matched MeSH terms: Antibodies, Viral/immunology
  5. Eshaghi M, Tan WS, Ong ST, Yusoff K
    J Clin Microbiol, 2005 Jul;43(7):3172-7.
    PMID: 16000431
    The nucleocapsid (N) protein of Nipah virus (NiV) is a major constituent of the viral proteins which play a role in encapsidation, regulating the transcription and replication of the viral genome. To investigate the use of a fusion system to aid the purification of the recombinant N protein for structural studies and potential use as a diagnostic reagent, the NiV N gene was cloned into the pFastBacHT vector and the His-tagged fusion protein was expressed in Sf9 insect cells by recombinant baculovirus. Western blot analysis of the recombinant fusion protein with anti-NiV antibodies produced a band of approximately 62 kDa. A time course study showed that the highest level of expression was achieved after 3 days of incubation. Electron microscopic analysis of the NiV recombinant N fusion protein purified on a nickel-nitrilotriacetic acid resin column revealed different types of structures, including spherical, ring-like, and herringbone-like particles. The light-scattering measurements of the recombinant N protein also confirmed the polydispersity of the sample with hyrdrodynamic radii of small and large types. The optical density spectra of the purified recombinant fusion protein revealed a high A(260)/A(280) ratio, indicating the presence of nucleic acids. Western blotting and enzyme-linked immunosorbent assay results showed that the recombinant N protein exhibited the antigenic sites and conformation necessary for specific antigen-antibody recognition.
    Matched MeSH terms: Antibodies, Viral/immunology
  6. Hu D, Zhu Z, Li S, Deng Y, Wu Y, Zhang N, et al.
    PLoS Pathog, 2019 06;15(6):e1007836.
    PMID: 31242272 DOI: 10.1371/journal.ppat.1007836
    Dengue is the most widespread vector-borne viral disease caused by dengue virus (DENV) for which there are no safe, effective drugs approved for clinical use. Here, by using sequential antigen panning of a yeast antibody library derived from healthy donors against the DENV envelop protein domain III (DIII) combined with depletion by an entry defective DIII mutant, we identified a cross-reactive human monoclonal antibody (mAb), m366.6, which bound with high affinity to DENV DIII from all four DENV serotypes. Immunogenetic analysis indicated that m366.6 is a germline-like mAb with very few somatic mutations from the closest VH and Vλ germline genes. Importantly, we demonstrated that it potently neutralized DENV both in vitro and in the mouse models of DENV infection without detectable antibody-dependent enhancement (ADE) effect. The epitope of m366.6 was mapped to the highly conserved regions on DIII, which may guide the design of effective dengue vaccine immunogens. Furthermore, as the first germline-like mAb derived from a naïve antibody library that could neutralize all four DENV serotypes, the m366.6 can be a tool for exploring mechanisms of DENV infection, and is a promising therapeutic candidate.
    Matched MeSH terms: Antibodies, Viral/immunology*
  7. Hayman DT, Wang LF, Barr J, Baker KS, Suu-Ire R, Broder CC, et al.
    PLoS One, 2011;6(9):e25256.
    PMID: 21966471 DOI: 10.1371/journal.pone.0025256
    Henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), have Pteropid bats as their known natural reservoirs. Antibodies against henipaviruses have been found in Eidolon helvum, an old world fruit bat species, and henipavirus-like nucleic acid has been detected in faecal samples from E. helvum in Ghana. The initial outbreak of NiV in Malaysia led to over 265 human encephalitis cases, including 105 deaths, with infected pigs acting as amplifier hosts for NiV during the outbreak. We detected non-neutralizing antibodies against viruses of the genus Henipavirus in approximately 5% of pig sera (N = 97) tested in Ghana, but not in a small sample of other domestic species sampled under a E. helvum roost. Although we did not detect neutralizing antibody, our results suggest prior exposure of the Ghana pig population to henipavirus(es). Because a wide diversity of henipavirus-like nucleic acid sequences have been found in Ghanaian E. helvum, we hypothesise that these pigs might have been infected by henipavirus(es) sufficiently divergent enough from HeVor NiV to produce cross-reactive, but not cross-neutralizing antibodies to HeV or NiV.
    Matched MeSH terms: Antibodies, Viral/immunology*
  8. Chua KB, Voon K, Yu M, Keniscope C, Abdul Rasid K, Wang LF
    PLoS One, 2011;6(10):e25434.
    PMID: 22022394 DOI: 10.1371/journal.pone.0025434
    Bats are increasingly being recognized as important reservoir hosts for a large number of viruses, some of them can be highly virulent when they infect human and livestock animals. Among the new bat zoonotic viruses discovered in recent years, several reoviruses (respiratory enteric orphan viruses) were found to be able to cause acute respiratory infections in humans, which included Melaka and Kampar viruses discovered in Malaysia, all of them belong to the genus Orthoreovirus, family Reoviridae. In this report, we describe the isolation of a highly related virus from an adult patient who suffered acute respiratory illness in Malaysia. Although there was no direct evidence of bat origin, epidemiological study indicated the potential exposure of the patient to bats before the onset of disease. The current study further demonstrates that spillover events of different strains of related orthoreoviruses from bats to humans are occurring on a regular basis, which calls for more intensive and systematic surveillances to fully assess the true public health impact of these newly discovered bat-borne zoonotic reoviruses.
    Matched MeSH terms: Antibodies, Viral/immunology
  9. Yusuf M, Konc J, Sy Bing C, Trykowska Konc J, Ahmad Khairudin NB, Janezic D, et al.
    J Chem Inf Model, 2013 Sep 23;53(9):2423-36.
    PMID: 23980878 DOI: 10.1021/ci400421e
    ProBiS is a new method to identify the binding site of protein through local structural alignment against the nonredundant Protein Data Bank (PDB), which may result in unique findings compared to the energy-based, geometry-based, and sequence-based predictors. In this work, binding sites of Hemagglutinin (HA), which is an important target for drugs and vaccines in influenza treatment, have been revisited by ProBiS. For the first time, the identification of conserved binding sites by local structural alignment across all subtypes and strains of HA available in PDB is presented. ProBiS finds three distinctive conserved sites on HA's structure (named Site 1, Site 2, and Site 3). Compared to other predictors, ProBiS is the only one that accurately defines the receptor binding site (Site 1). Apart from that, Site 2, which is located slightly above the TBHQ binding site, is proposed as a potential novel conserved target for membrane fusion inhibitor. Lastly, Site 3, located around Helix A at the stem domain and recently targeted by cross-reactive antibodies, is predicted to be conserved in the latest H7N9 China 2013 strain as well. The further exploration of these three sites provides valuable insight in optimizing the influenza drug and vaccine development.
    Matched MeSH terms: Antibodies, Viral/immunology
  10. Chem YK, Chua KB, Malik Y, Voon K
    Trop Biomed, 2015 Jun;32(2):344-51.
    PMID: 26691263 MyJurnal
    Monoclonal antibody-escape variant of dengue virus type 1 (MabEV DEN-1) was discovered and isolated in an outbreak of dengue in Klang Valley, Malaysia from December 2004 to March 2005. This study was done to investigate whether DEN152 (an isolate of MabEV DEN-1) is a product of recombination event or not. In addition, the non-synonymous mutations that correlate with the monoclonal antibody-escape variant were determined in this study. The genomes of DEN152 and two new DEN-1 isolates, DENB04 and DENK154 were completely sequenced, aligned, and compared. Phylogenetic tree was plotted and the recombination event on DEN152 was investigated. DEN152 is sub-grouped under genotype I and is closely related genetically to a DEN-1 isolated in Japan in 2004. DEN152 is not a recombinant product of any parental strains. Four amino acid substitutions were unique only to DEN 152. These amino acid substitutions were (Ser)[326](Leu), (Ser)[340](Leu) at the deduced E protein, (Ile)[250](Thr) at NS1 protein, and (Thr)[41](Ser) at NS5 protein. Thus, DEN152 is an isolate of the emerging monoclonal antibody-escape variant DEN-1 that escaped diagnostic laboratory detection.
    Matched MeSH terms: Antibodies, Viral/immunology*
  11. Leong WJ, Quek XF, Tan HY, Wong KM, Muhammad HS, Mohamed NA, et al.
    J Med Virol, 2022 02;94(2):771-775.
    PMID: 34708881 DOI: 10.1002/jmv.27422
    Pteropine orthoreovirus (PRV) is an emerging zoonotic respiratory virus that can be transmitted from bats to humans. In Malaysia, aside from PRV2P (Pulau virus) being isolated from Pteropus hypomelanus sampled in Tioman Island, PRV3M (Melaka virus), PRV4K (Kampar virus), and PRV7S (Sikamat virus) were all isolated from samples of patients who reported having a disease spectrum from acute respiratory distress to influenza-like illness and sometimes even with enteric symptoms such as diarrhea and abdominal pain. Screening of sera collected from human volunteers on Tioman Island in 2001-2002 demonstrated that 12.8% (14/109) were positive for PRV2P and PRV3M. Taking all these together, we aim to investigate the serological prevalence of PRV (including PRV4K and PRV7S) among Tioman Island inhabitants again with the assumption that the seroprevalence rate will remain nearly similar to the above reported if human exposure to bats is still happening in the island. Using sera collected from human volunteers on the same island in 2017, we demonstrated seroprevalence of 17.8% (28/157) against PRV2P and PRV3M, respectively. Seropositivity of 11.4% among Tioman Island inhabitants against PRV4K and PRV7S, respectively, was described in this study. In addition, the seroprevalence of 89.5% (17/19), 73.6% (14/19), 63.0% (12/19), and 73.6% (14/19) against PRV2P, PRV3M, PRV4K, and PRV7S, respectively, were observed among pteropid bats in the island. We revealed that the seroprevalence of PRV among island inhabitants remains nearly similar after nearly two decades, suggesting that potential spill-over events in bat-human interface areas in the Tioman Island. We are unclear whether such spillover was directly from bats to humans, as suspected for the PRV3M human cases, or from an intermediate host(s) yet to be identified. There is a high possibility of the viruses circulating among the bats as demonstrated by high seroprevalence against PRV in the bats.
    Matched MeSH terms: Antibodies, Viral/immunology
  12. Prameela KK, Vijaya LR
    Malays J Nutr, 2012 Apr;18(1):103-11.
    PMID: 23713234 MyJurnal
    Globally, rotaviral vaccines in use today have contributed to the reduction of the incidence of rotaviral diarrhoeas. Despite the substantial protection conferred by the current vaccines against the rotaviral strains, it is only prudent to recognise that other protective factors, like breastfeeding, also provide some degree of protection against this disease. This article has attempted to review some important mechanisms of protection in breast milk against the rotaviruses and highlight the oft forgotten non-immunoglobulin fraction in breast milk as an additional tool of protection against rotavirus disease. The adaptive capacity of breast milk to environment is another compelling reason to continue breastfeeding as it can usefully complement and be significant in the use of many vaccines. Vital immunoprotective constituents in breast milk beneficially protect the infant by initiating and strengthening many immune responses and should be borne in mind as essential tools of defence even in an era where vaccines play a pivotal role in the combat against certain diseases. It is impressive that besides nutritive advantages, the suckling infant enjoys appreciable immunoprotection via exclusive breastfeeding.
    Matched MeSH terms: Antibodies, Viral/immunology
  13. Tan GH, Yusoff K, Seow HF, Tan WS
    J Clin Virol, 2007 Jan;38(1):49-56.
    PMID: 17074533
    Phage display is an alternative method for constructing and selecting antibodies with desired specificity towards an antigen.
    Matched MeSH terms: Antibodies, Viral/immunology*
  14. Monjezi R, Tan SW, Tey BT, Sieo CC, Tan WS
    J Virol Methods, 2013 Jan;187(1):121-6.
    PMID: 23022731 DOI: 10.1016/j.jviromet.2012.09.017
    The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples.
    Matched MeSH terms: Antibodies, Viral/immunology
  15. Ch'ng WC, Stanbridge EJ, Ong KC, Wong KT, Yusoff K, Shafee N
    J Med Virol, 2011 Oct;83(10):1783-91.
    PMID: 21837796 DOI: 10.1002/jmv.22198
    Enterovirus 71 (EV71) infection may cause severe neurological complications, particularly in young children. Despite the risks, there are still no commercially available EV71 vaccines. Hence, a candidate vaccine construct, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP1(1-100) ) protein, was evaluated in a mouse model of EV71 infection. Previously, it was shown that this protein construct provoked a strong immune response in vaccinated adult rabbits. That study, however, did not address the issue of its effectiveness against EV71 infection in young animals. In the present study, EV71 viral challenge in vaccinated newborn mice resulted in more than 40% increase in survival rate. Significantly, half of the surviving mice fully recovered from their paralysis. Histological analysis of all of the surviving mice revealed a complete clearance of EV71 viral antigens from their brains and spinal cords. In hind limb muscles, the amounts of the antigens detected correlated with the degrees of tissue damage and paralysis. Findings from this study provide evidence that immunization with the NPt-VP1(1-100) immunogen in a newborn mouse model confers partial protection against EV71 infection, and also highlights the importance of NPt-VP1(1-100) as a possible candidate vaccine for protection against EV71 infections.
    Matched MeSH terms: Antibodies, Viral/immunology
  16. Yeo AS, Rathakrishnan A, Wang SM, Ponnampalavanar S, Manikam R, Sathar J, et al.
    Biomed Res Int, 2015;2015:420867.
    PMID: 25815314 DOI: 10.1155/2015/420867
    Dengue virus infection is a common tropical disease which often occurs without being detected. These asymptomatic cases provide information in relation to the manifestation of immunological aspects. In this study, we developed an ELISA method to compare neutralizing effects of dengue prM and E antibodies between dengue patients and their asymptomatic household members. Recombinant D2 premembrane (prM) was constructed, cloned, and tested for antigenicity. The recombinant protein was purified and tested with controls by using an indirect ELISA method. Positive dengue serum samples with their asymptomatic pair were then carried out onto the developed ELISA. In addition, commercially available recombinant envelope (E) protein was used to develop an ELISA which was tested with the same set of serum samples in the prM ELISA. Asymptomatic individuals showed preexisting heterotypic neutralizing antibodies. The recombinant prM was antigenically reactive in the developed ELISA. Dengue patients had higher prM and E antibodies compared to their household members. Our study highlights the neutralizing antibodies levels with respect to dengue prM and E between dengue patients and asymptomatic individuals.
    Matched MeSH terms: Antibodies, Viral/immunology*
  17. Chua CL, Chan YF, Sam IC
    J Virol Methods, 2014 Jan;195:126-33.
    PMID: 24134938 DOI: 10.1016/j.jviromet.2013.10.015
    Chikungunya virus (CHIKV) is a mosquito-borne arbovirus which has recently re-emerged globally and poses a major threat to public health. Infection leads to severe arthralgia, and disease management remains supportive in the absence of vaccines and anti-viral interventions. The high specificities of monoclonal antibodies (mAbs) have been exploited in immunodiagnostics and immunotherapy in recent decades. In this study, eight different clones of mAbs were generated and characterised. These mAbs targeted the linear epitopes on the CHIKV E2 envelope glycoprotein, which is the major target antigen during infection. All the mAbs showed binding activity against the purified CHIKV virion or recombinant E2 when analysed by immunofluorescence, ELISA and Western blot. The epitopes of each mAb were mapped by overlapping synthetic peptide-based ELISA. The epitopes are distributed at different functional domains of E2 glycoprotein, namely at domain A, junctions of β-ribbons with domains A and B, and domain C. Alignment of mAb epitope sequences revealed that some are well-conserved within different genotypes of CHIKV, while some are identical to and likely to cross-react with the closely-related alphavirus O'nyong-nyong virus. These mAbs with their mapped epitopes are useful for the development of diagnostic or research tools, including immunofluorescence, ELISA and Western blot.
    Matched MeSH terms: Antibodies, Viral/immunology*
  18. Nor Rashid N, Teoh TC, Al-Harbi SJ, Yusof R, Rothan HA
    Trop Biomed, 2021 Mar 01;38(1):36-41.
    PMID: 33797522 DOI: 10.47665/tb.38.1.007
    Chikungunya virus (CHIKV) infection is the cause of acute symptoms and chronic symmetrical polyarthritis associated with long-term morbidity and mortality. Currently, there is no available licensed vaccine or particularly useful drug for human use against CHIKV infection. This study was conducted to evaluate the efficacy of antibodies produced by papaya mosaic virus (PapMV) nanoparticles fused to E2EP3 peptide of CHIKV envelope as a recombinant CHIKV vaccine. PapMV, PapMV-C- E2EP3, and E2EP3-N-PapMV were produced in E. coli with an approximate size of 27 to 30 kDa. ICR mice (5 to 6 weeks of age) were injected subcutaneously with 25 micrograms of vaccine construct, and ELISA measured the titer of CHIKV specific IgG antibodies. The results showed that both recombinant proteins E2EP3-N-PapMV and PapMVC-E2EP3 were able to induce IgG antibodies production in immunized mice against CHIKV while immunization with recombinant PapMV showed no IgG antibodies induction. The neutralizing activity of the antibodies generated by either E2EP3-N-PapMV or PapMV-C-E2EP3 exhibited similar inhibition to CHIKV replication in Vero cells using the cells based antibody neutralizing assay and analyzed by plaque formation assay. This study showed the effectiveness of nanoparticles vaccine generated by fusing epitope peptide of CHIKV envelope to papaya mosaic virus envelope in inducing a robust immune response in mice against CHIKV. The data showed that levels of neutralizing antibodies correlate with a protective immune response CHIKV replication.
    Matched MeSH terms: Antibodies, Viral/immunology*
  19. Ross RS, Viazov S, Schmitt U, Schmolke S, Tacke M, Ofenloch-Haehnle B, et al.
    J Med Virol, 1998 Feb;54(2):103-6.
    PMID: 9496367
    Since the identification of the new human virus, GB virus C (GBV-C)/hepatitis G-virus (HGV), in 1995/1996, reverse transcription polymerase chain reaction remained the sole available diagnostic tool for GBV-C/HGV infection. Recently, a serologic test based on the detection of antibodies to the putative envelope protein 2 (anti-E2) has been introduced. We used this assay for a seroepidemiological survey including 3,314 healthy individuals from different parts of the world, 123 patients from Germany who were suspected to have an increased risk of acquiring GBV-C/HGV infection, 128 multiple organ donors, and 90 GBV-C/HGV RNA positive persons. In European countries, anti-E2 seropositivity ranged from 10.9% (Germany) to 15.3% (Austria). In South Africa (20.3%) and Brazil (19.5%), even higher anti-E2 prevalence rates were recorded. In Asian countries like Bhutan (3.9%), Malaysia (6.3%), and the Philippines (2.7%), anti-E2 positivity was significantly lower. GBV-C/HGV anti-E2 prevalence in potential "risk groups," i.e., patients on hemodialysis and renal transplant recipients, did not vary significantly from anti-E2 seroprevalence in German blood donors. Anti-E2 and GBV-C/HGV RNA were found to be mutually exclusive, confirming the notion that anti-E2 has to be considered as a marker of past infection.
    Matched MeSH terms: Antibodies, Viral/immunology
  20. Wang HJ, Liu L, Li XF, Ye Q, Deng YQ, Qin ED, et al.
    J Gen Virol, 2016 07;97(7):1551-1556.
    PMID: 27100268 DOI: 10.1099/jgv.0.000486
    Duck Tembusu virus (DTMUV), a newly identified flavivirus, has rapidly spread to China, Malaysia and Thailand. The potential threats to public health have been well-highlighted; however its virulence and pathogenesis remain largely unknown. Here, by using reverse genetics, a recombinant chimeric DTMUV based on Japanese encephalitis live vaccine strain SA14-14-2 was obtained by substituting the corresponding prM and E genes (named ChinDTMUV). In vitro characterization demonstrated that ChinDTMUV replicated efficiently in mammalian cells with small-plaque phenotype in comparison with its parental viruses. Mouse tests showed ChinDTMUV exhibited avirulent phenotype in terms of neuroinvasiveness, while it retained neurovirulence from its parental virus DTMUV. Furthermore, immunization with ChinDTMUV was evidenced to elicit robust IgG and neutralizing antibody responses in mice. Overall, we successfully developed a viable chimeric DTMUV, and these results provide a useful platform for further investigation of the pathogenesis of DTMUV and development of a live attenuated DTMUV vaccine candidate.
    Matched MeSH terms: Antibodies, Viral/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links