Displaying all 5 publications

Abstract:
Sort:
  1. Hussain RMF, Kim HK, Khurshid M, Akhtar MT, Linthorst HJM
    Metabolomics, 2018 01 31;14(3):25.
    PMID: 30830336 DOI: 10.1007/s11306-018-1317-0
    INTRODUCTION: WRKY proteins belong to a plant-specific class of transcription factors. Seventy-four WKRY genes have been identified in Arabidopsis and many WRKY proteins are known to be involved in responses to stress, especially to biotic stress. They may act either as transcriptional activators or as repressors of genes that play roles in the stress response. A number of studies have proposed the connection of Arabidopsis WRKY transcription factors in induced pathogenesis-related (PR) gene expression, although no direct evidence has been presented for specific WRKY-PR promoter interactions.

    OBJECTIVE: We previously identified AtWRKY50 as a transcriptional activator of SAR gene PR1. Although PR1 accumulates to high levels in plants after attack by pathogens, its function is still elusive. Here we investigated the effects of overexpression of several WRKY proteins, including AtWRKY50, on the metabolome of Arabidopsis thaliana.

    METHODS: The influence of overexpression of WRKY proteins on the metabolites of Arabidopsis was investigated by using an NMR spectroscopy-based metabolomic approach. The 1H NMR data was analysed using the multivariate data analysis methods, such as principal component analysis, hierarchical cluster analysis and partial least square-discriminant analysis.

    RESULTS: The results showed that the metabolome of transgenic Arabidopsis seedlings overexpressing AtWRKY50 was different from wild type Arabidopsis and transgenic Arabidopsis overexpressing other WRKY genes. Amongst other metabolites, sinapic acid and 1-O-sinapoyl-β-D-glucose especially appeared to be the most prominent discriminating metabolites, accumulating to levels 2 to 3 times higher in the AtWRKY50 overexpressor lines.

    CONCLUSION: Our results indicate a possible involvement of AtWRKY50 in secondary metabolite production in Arabidopsis, in particular of hydroxycinnamates such as sinapic acid and 1-O-sinapoyl-β-D-glucose.

    Matched MeSH terms: Cinnamates/metabolism*
  2. Cha TS, Chen CF, Yee W, Aziz A, Loh SH
    J Microbiol Methods, 2011 Mar;84(3):430-4.
    PMID: 21256888 DOI: 10.1016/j.mimet.2011.01.005
    The use of acetosyringone in Agrobacterium-mediated gene transfer into plant hosts has been favored for the past few decades. The influence of other phenolic compounds and their effectiveness in Agrobacterium-mediated plant transformation systems has been neglected. In this study, the efficacy of four phenolic compounds on Agrobacterium-mediated transformation of the unicellular green alga Nannochloropsis sp. (Strain UMT-M3) was assessed by using β-glucuronidase (GUS) assay. We found that cinnamic acid, vanillin and coumarin produced higher percentages of GUS positive cells as compared to acetosyringone. These results also show that the presence of methoxy group in the phenolic compounds may not be necessary for Agrobacterium vir gene induction and receptor binding as suggested by previous studies. These findings provide possible alternative Agrobacterium vir gene inducers that are more potent as compared to the commonly used acetosyringone in achieving high efficiency of Agrobacterium-mediated transformation in microalgae and possibly for other plants.
    Matched MeSH terms: Cinnamates/metabolism*
  3. Choo WS, Birch EJ, Stewart I
    Lipids, 2009 Sep;44(9):807-15.
    PMID: 19727883 DOI: 10.1007/s11745-009-3334-2
    Lipase-catalyzed transesterification of flaxseed oil with cinnamic acid (CA) or ferulic acid (FA) using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate whether the lipophilized products provided enhanced antioxidant activity in the oil. Lipase-catalyzed transesterification of flaxseed oil with CA or FA produced a variety of lipophilized products (identified using ESI-MS-MS) such as monocinnamoyl/feruloyl-diacylglycerol, dicinnamoyl-monoacylglycerol and monocinnamoyl-monoacylglycerol. The free radical scavenging activity of the lipophilized products of lipase-catalyzed transesterification of flaxseed oil with CA or FA toward 2,2-diphenyl-1-picrylhydrazyl radical (DPPH.) were both examined in ethanol and ethyl acetate. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Unesterified FA showed the highest free radical scavenging activity among all substrates tested while CA had negligible activity. The esterification of CA or FA with flaxseed oil resulted in significant increase and decrease in the radical scavenging activity compared with the native phenolic acid, respectively. Based on the ratio of a substrate to DPPH. concentration, lipophilized FA was a much more efficient free radical scavenger compared to lipophilized CA and was able to provide enhanced antioxidant activity in the flaxseed oil. Lipophilized cinnamic acid did not provide enhanced radical scavenging activity in the flaxseed oil as the presence of natural hydrophilic antioxidants in the oil had much greater radical scavenging activity.
    Matched MeSH terms: Cinnamates/metabolism
  4. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Molecules, 2010 Nov 03;15(11):7907-22.
    PMID: 21060298 DOI: 10.3390/molecules15117907
    Zingiber officinale Roscoe. (Family Zingiberaceae) is well known in Asia. The plant is widely cultivated in village gardens in the tropics for its medicinal properties and as a marketable spice in Malaysia. Ginger varieties are rich in physiologically active phenolics and flavonoids with a range of pharmacological activities. Experiments were conducted to determine the feasibility of increasing levels of flavonoids (quercetin, rutin, catechin, epicatechin, kaempferol, naringenin, fisetin and morin) and phenolic acid (gallic acid, vanillic acid, ferulic acid, tannic acid, cinnamic acid and salicylic acid), and antioxidant activities in different parts of Malaysian young ginger varieties (Halia Bentong and Halia Bara) with CO(2) enrichment in a controlled environment system. Both varieties showed an increase in phenolic compounds and flavonoids in response to CO(2) enrichment from 400 to 800 µmol mol-1 CO(2). These increases were greater in rhizomes compared to leaves. High performance liquid chromatography (HPLC) results showed that quercetin and gallic acid were the most abundant flavonoid and phenolic acid in Malaysian young ginger varieties. Under elevated CO(2) conditions, kaempferol and fisetin were among the flavonoid compounds, and gallic acid and vanillic acid were among the phenolic compounds whose levels increased in both varieties. As CO(2) concentration was increased from 400 to 800 µmol mol-1, free radical scavenging power (DPPH) increased about 30% in Halia Bentong and 21.4% in Halia Bara; and the rhizomes exhibited more enhanced free radical scavenging power, with 44.9% in Halia Bentong and 46.2% in Halia Bara. Leaves of both varieties also displayed good levels of flavonoid compounds and antioxidant activities. These results indicate that the yield and pharmaceutical quality of Malaysian young ginger varieties can be enhanced by controlled environment production and CO(2) enrichment.
    Matched MeSH terms: Cinnamates/metabolism
  5. Srivastava N, Mishra S, Iqbal H, Chanda D, Shanker K
    J Ethnopharmacol, 2021 May 10;271:113911.
    PMID: 33571614 DOI: 10.1016/j.jep.2021.113911
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga L. rhizome (KGR) is part of more than sixty-one Ayurvedic formulations and commonly known as 'Chandramula'. KGR is widely used in traditional Indian medicines to treat fever (jwar), rheumatism (Amavata), respiratory (Shwasa), hypertension (Vyanabala vaishamya) and cardiovascular disorders (Vyanavayu Dushtijanya Hrudrog). Although ethnomedicinal properties have extensively been demonstrated in traditional medicines of south-east countries i.e. China, India, Indonesia, and Malaysia, the chemico-biological validation are still lacking.

    AIM OF THE STUDY: Chemico-biological standardization with respect to its vasorelaxation potential is the main objective of the present study. To investigate the vasorelaxation potential of key phytochemical of KGR, i.e., ethyl-p-methoxycinnamate (EPMC) and to study it's the mechanism of action.

    MATERIALS AND METHODS: A HPLC method was developed and validated for the quality assessment of KGR using its two major phytochemicals i.e. ethyl-p-methoxycinnamate (EPMC) and ethyl cinnamate (EC) in KGR. The vasorelaxation effect of major phytochemicals of KGR was evaluated on the main mesenteric arteries isolated from male Wistar rats. Specific BKca channel blocker tetraethylammonium (TEA), receptor antagonist, nitric oxide scavenging capacity, and antioxidant potential were also evaluated for its plausible mechanism.

    RESULTS: Present validated HPLC method facilitates simultaneous quantitation of EPMC and EC faster than classical GC techniques. EPMC has shown a dose-dependent relaxation in rat main mesenteric arteries (MMA) contracted by U46619 with an Emax of 58.68 ± 3.31%. Similarly, in endothelium-denuded MMA rings, relaxation was also observed (Emax of 61.83 ± 3.38%). Moreover, relaxation response to EPMC has strongly inhibited (Emax 14.76 ± 2.29%) when the tissue exposed to depolarizing high K+ containing buffer for the contraction. The point correlation dimension (pD2) values were also significantly decreased in high K+ treated arterial rings compared to control. Interestingly, when MMA rings incubated with a specific BKca channel blocker (TEA, 1 mM), the relaxation response to EPMC was also significantly blocked.

    CONCLUSIONS: The first time this study demonstrated the chemical standardization of K. galanga rhizome and EPMC is responsible for its vasorelaxation potential as demonstrated by the endothelium-independent response mediated by Ca2+ dependent potassium channels.

    Matched MeSH terms: Cinnamates/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links