Displaying all 3 publications

Abstract:
Sort:
  1. Huang B, Sui WD, Zhang ZT, Zhao L, Li YY, Yang DH, et al.
    J Biochem Mol Toxicol, 2025 Jan;39(1):e70056.
    PMID: 39812124 DOI: 10.1002/jbt.70056
    Phospholipase A2 receptor 1 (PLA2R1) exists in many animals and plays an important role in membranous nephropathy. In this study, we aimed to evaluate a PLA2R1 knock-in rat model with repaired kidney function to study the molecular mechanisms of membranous nephropathy. We constructed the PLA2R1 knockout [PLA2R1(-)] model and PLA2R1 knock in [PLA2R1(+)] model in rats. Consistent complement C3 and IgA expression was confirmed through colocalization studies. Urinary biochemical indicators were performed using Automatic Biochemistry Analyzer. The complement C3, IgG, and Nephrin were detected by immunofluorescence assay. The expression levels of complement C3, IgA, and PLA2R1 were detected by western blot. The differential expression proteins (DEPs) between control and PLA2R1(+) models were detected by liquid chromatography with tandem mass spectrometry. The PLA2R1(-) model showed proteinuria, complement C3 aggregation, and IgA and IgG deposition in the glomerulus. Comparing with the PLA2R1(-) model, the PLA2R1(+) model, the deposition of complement C3 and IgA in the glomerulus did not completely disappear, and IgG expression weakened. Moreover, the absolute value of urinary protein was much lower in the PLA2R1(+) model than in the PLA2R1(-) model, and some of the humanized PLA2R1 gene fragments repaired some of the kidney functions. Humanized PLA2R1-insertion in rats can repair part of the renal function and reduce proteinuria, which will help in studying the molecular mechanisms of membranous nephropathy, as well as the entire membranous nephropathy-related system and complement activation signaling pathway.
    Matched MeSH terms: Complement C3/genetics
  2. Zaid SSM, Othman S, Kassim NM
    Biomed Pharmacother, 2021 Aug;140:111757.
    PMID: 34044283 DOI: 10.1016/j.biopha.2021.111757
    BACKGROUND: Numerous scientific studies have found that young women are at a high risk of reproductive infertility due to their routine exposure to numerous bisphenol A (BPA) products. This risk is highly associated with the production of reactive oxygen species from BPA products. Ficus deltoidea, which has strong antioxidant properties, was selected as a potential protective agent to counter the detrimental effects of BPA in the rat uterus.

    METHODS: Female Sprague-Dawley rats were allocated into four groups (n = 8) as follows: (i) the Normal Control group (NC), (ii) the BPA-exposed group (PC), (iii) the group concurrently treated with BPA and F. deltoidea (FC) and (iv) the group treated with F. deltoidea alone (F).

    RESULTS: After 6 weeks of concurrent treatment with F. deltoidea, uterine abnormalities in the BPA-exposed rats showed a significant improvement. Specifically, the size of stromal cells increased; interstitial spaces between stromal cells expanded; the histology of the glandular epithelium and the myometrium appeared normal and mitotic figures were present. The suppressive effects of BPA on the expression levels of sex steroid receptors (ERα and ERβ) and the immunity gene C3 were significantly normalised by F. deltoidea treatment. The role of F. deltoidea as an antioxidant agent was proven by the significant reduction in malondialdehyde level in BPA-exposed rats. Moreover, in BPA-exposed rats, concurrent treatment with F. deltoidea could normalise the level of the gonadotropin hormone, which could be associated with an increase in the percentage of rats with a normal oestrous cycle.

    CONCLUSION: F. deltoidea has the potential to counter the toxic effects of BPA on the female reproductive system. These protective effects might be due to the phytochemical properties of F. deltoidea. Therefore, future study is warranted to identify the bioactive components that contribute to the protective effects of F. deltoidea.

    Matched MeSH terms: Complement C3/genetics
  3. Gavriilaki E, Asteris PG, Touloumenidou T, Koravou EE, Koutra M, Papayanni PG, et al.
    Clin Immunol, 2021 May;226:108726.
    PMID: 33845193 DOI: 10.1016/j.clim.2021.108726
    Recent studies suggest excessive complement activation in severe coronavirus disease-19 (COVID-19). The latter shares common characteristics with complement-mediated thrombotic microangiopathy (TMA). We hypothesized that genetic susceptibility would be evident in patients with severe COVID-19 (similar to TMA) and associated with disease severity. We analyzed genetic and clinical data from 97 patients hospitalized for COVID-19. Through targeted next-generation-sequencing we found an ADAMTS13 variant in 49 patients, along with two risk factor variants (C3, 21 patients; CFH,34 patients). 31 (32%) patients had a combination of these, which was independently associated with ICU hospitalization (p = 0.022). Analysis of almost infinite variant combinations showed that patients with rs1042580 in thrombomodulin and without rs800292 in complement factor H did not require ICU hospitalization. We also observed gender differences in ADAMTS13 and complement-related variants. In light of encouraging results by complement inhibitors, our study highlights a patient population that might benefit from early initiation of specific treatment.
    Matched MeSH terms: Complement C3/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links