Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Abbas M, Abd Majid A, Ali JM
    ScientificWorldJournal, 2014;2014:391568.
    PMID: 24757421 DOI: 10.1155/2014/391568
    We present the smooth and visually pleasant display of 2D data when it is convex, which is contribution towards the improvements over existing methods. This improvement can be used to get the more accurate results. An attempt has been made in order to develop the local convexity-preserving interpolant for convex data using C(2) rational cubic spline. It involves three families of shape parameters in its representation. Data dependent sufficient constraints are imposed on single shape parameter to conserve the inherited shape feature of data. Remaining two of these shape parameters are used for the modification of convex curve to get a visually pleasing curve according to industrial demand. The scheme is tested through several numerical examples, showing that the scheme is local, computationally economical, and visually pleasing.
    Matched MeSH terms: Computer Graphics*
  2. Al-Dabbagh MM, Salim N, Rehman A, Alkawaz MH, Saba T, Al-Rodhaan M, et al.
    ScientificWorldJournal, 2014;2014:612787.
    PMID: 25309952 DOI: 10.1155/2014/612787
    This paper presents a novel features mining approach from documents that could not be mined via optical character recognition (OCR). By identifying the intimate relationship between the text and graphical components, the proposed technique pulls out the Start, End, and Exact values for each bar. Furthermore, the word 2-gram and Euclidean distance methods are used to accurately detect and determine plagiarism in bar charts.
    Matched MeSH terms: Computer Graphics
  3. Ali HH, Sunar MS, Kolivand H
    PLoS One, 2017;12(6):e0178415.
    PMID: 28632740 DOI: 10.1371/journal.pone.0178415
    Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications.
    Matched MeSH terms: Computer Graphics*
  4. Beng TS, Ann YH, Guan NC, Chin LE, Loong LC, Ying NT, et al.
    J Palliat Med, 2017 08;20(8):869-874.
    PMID: 28410449 DOI: 10.1089/jpm.2016.0448
    BACKGROUND: Measuring suffering objectively presents a challenge because suffering is a unique and subjective experience. However, objective tools are of profound importance in the detection and management of suffering in clinical practice for optimal patient care.

    OBJECTIVE: The objective of the study is to assess the psychometric properties of the Suffering Pictogram, a new suffering assessment instrument on a population of palliative care patients.

    DESIGN AND SETTING: This is a validation study conducted at University of Malaya Medical Centre, Kuala Lumpur, Malaysia. Ninety one palliative care patients were recruited. Patients were interviewed with the Suffering Pictogram and FACIT-Sp.

    RESULTS: The median completion time for the Suffering Pictogram was five minutes. The Suffering Pictogram showed good internal consistency, with a Cronbach's alpha of 0.836. The total scores of the Suffering Pictogram correlated strongly and negatively with FACIT-Sp total score (Spearman's Rho = -0.625, p 

    Matched MeSH terms: Computer Graphics*
  5. Chong SY, Tiňo P, He J, Yao X
    Evol Comput, 2019;27(2):195-228.
    PMID: 29155606 DOI: 10.1162/evco_a_00218
    Studying coevolutionary systems in the context of simplified models (i.e., games with pairwise interactions between coevolving solutions modeled as self plays) remains an open challenge since the rich underlying structures associated with pairwise-comparison-based fitness measures are often not taken fully into account. Although cyclic dynamics have been demonstrated in several contexts (such as intransitivity in coevolutionary problems), there is no complete characterization of cycle structures and their effects on coevolutionary search. We develop a new framework to address this issue. At the core of our approach is the directed graph (digraph) representation of coevolutionary problems that fully captures structures in the relations between candidate solutions. Coevolutionary processes are modeled as a specific type of Markov chains-random walks on digraphs. Using this framework, we show that coevolutionary problems admit a qualitative characterization: a coevolutionary problem is either solvable (there is a subset of solutions that dominates the remaining candidate solutions) or not. This has an implication on coevolutionary search. We further develop our framework that provides the means to construct quantitative tools for analysis of coevolutionary processes and demonstrate their applications through case studies. We show that coevolution of solvable problems corresponds to an absorbing Markov chain for which we can compute the expected hitting time of the absorbing class. Otherwise, coevolution will cycle indefinitely and the quantity of interest will be the limiting invariant distribution of the Markov chain. We also provide an index for characterizing complexity in coevolutionary problems and show how they can be generated in a controlled manner.
    Matched MeSH terms: Computer Graphics*
  6. Firdaus Raih M, Ahmad HA, Sharum MY, Azizi N, Mohamed R
    Appl. Bioinformatics, 2005;4(2):147-50.
    PMID: 16128617
    Bacterial proteases are an important group of enzymes that have very diverse biochemical and cellular functions. Proteases from prokaryotic sources also have a wide range of uses, either in medicine as pathogenic factors or in industry and therapeutics. ProLysED (Prokaryotic Lysis Enzymes Database), our meta-server integrated database of bacterial proteases, is a useful, albeit very niche, resource. The features include protease classification browsing and searching, organism-specific protease browsing, molecular information and visualisation of protease structures from the Protein Data Bank (PDB) as well as predicted protease structures.
    Matched MeSH terms: Computer Graphics
  7. Gopalai AA, Senanayake SM, Gouwanda D
    IEEE Trans Inf Technol Biomed, 2011 Jul;15(4):608-14.
    PMID: 21478080 DOI: 10.1109/TITB.2011.2140378
    A force-sensing platform (FSP), sensitive to changes of the postural control system was designed. The platform measured effects of postural perturbations in static and dynamic conditions. This paper describes the implementation of an FSP using force-sensing resistors as sensing elements. Real-time qualitative assessment utilized a rainbow color scale to identify areas with high force concentration. Postprocessing of the logged data provided end-users with quantitative measures of postural control. The objective of this research was to establish the feasibility of using an FSP to test and gauge human postural control. Tests were conducted in eye open and eye close states. Readings obtained were tested for repeatability using a one-way analysis of variance test. The platform gauged postural sway by measuring the area of distribution for the weighted center of applied pressure at the foot. A fuzzy clustering algorithm was applied to identify regions of the foot with repetitive pressure concentration. Potential application of the platform in a clinical setting includes monitoring rehabilitation progress of stability dysfunction. The platform functions as a qualitative tool for initial, on-the-spot assessment, and quantitative measure for postacquisition assessment on balance abilities.
    Matched MeSH terms: Computer Graphics
  8. Ho PF, Kam YH, Wee MC, Chong YN, Por LY
    ScientificWorldJournal, 2014;2014:838623.
    PMID: 24991649 DOI: 10.1155/2014/838623
    Traditionally, picture-based password systems employ password objects (pictures/icons/symbols) as input during an authentication session, thus making them vulnerable to "shoulder-surfing" attack because the visual interface by function is easily observed by others. Recent software-based approaches attempt to minimize this threat by requiring users to enter their passwords indirectly by performing certain mental tasks to derive the indirect password, thus concealing the user's actual password. However, weaknesses in the positioning of distracter and password objects introduce usability and security issues. In this paper, a new method, which conceals information about the password objects as much as possible, is proposed. Besides concealing the password objects and the number of password objects, the proposed method allows both password and distracter objects to be used as the challenge set's input. The correctly entered password appears to be random and can only be derived with the knowledge of the full set of password objects. Therefore, it would be difficult for a shoulder-surfing adversary to identify the user's actual password. Simulation results indicate that the correct input object and its location are random for each challenge set, thus preventing frequency of occurrence analysis attack. User study results show that the proposed method is able to prevent shoulder-surfing attack.
    Matched MeSH terms: Computer Graphics/standards*
  9. Kahaki SMM, Arshad H, Nordin MJ, Ismail W
    PLoS One, 2018;13(7):e0200676.
    PMID: 30024921 DOI: 10.1371/journal.pone.0200676
    Image registration of remotely sensed imagery is challenging, as complex deformations are common. Different deformations, such as affine and homogenous transformation, combined with multimodal data capturing can emerge in the data acquisition process. These effects, when combined, tend to compromise the performance of the currently available registration methods. A new image transform, known as geometric mean projection transform, is introduced in this work. As it is deformation invariant, it can be employed as a feature descriptor, whereby it analyzes the functions of all vertical and horizontal signals in local areas of the image. Moreover, an invariant feature correspondence method is proposed as a point matching algorithm, which incorporates new descriptor's dissimilarity metric. Considering the image as a signal, the proposed approach utilizes a square Eigenvector correlation (SEC) based on the Eigenvector properties. In our experiments on standard test images sourced from "Featurespace" and "IKONOS" datasets, the proposed method achieved higher average accuracy relative to that obtained from other state of the art image registration techniques. The accuracy of the proposed method was assessed using six standard evaluation metrics. Furthermore, statistical analyses, including t-test and Friedman test, demonstrate that the method developed as a part of this study is superior to the existing methods.
    Matched MeSH terms: Computer Graphics
  10. Kamel NS, Sayeed S, Ellis GA
    IEEE Trans Pattern Anal Mach Intell, 2008 Jun;30(6):1109-13.
    PMID: 18421114 DOI: 10.1109/TPAMI.2008.32
    Utilizing the multiple degrees of freedom offered by the data glove for each finger and the hand, a novel on-line signature verification system using the Singular Value Decomposition (SVD) numerical tool for signature classification and verification is presented. The proposed technique is based on the Singular Value Decomposition in finding r singular vectors sensing the maximal energy of glove data matrix A, called principal subspace, so the effective dimensionality of A can be reduced. Having modeled the data glove signature through its r-principal subspace, signature authentication is performed by finding the angles between the different subspaces. A demonstration of the data glove is presented as an effective high-bandwidth data entry device for signature verification. This SVD-based signature verification technique is tested and its performance is shown to be able to recognize forgery signatures with a false acceptance rate of less than 1.2%.
    Matched MeSH terms: Computer Graphics
  11. Khalid PI, Yunus J, Adnan R
    Res Dev Disabil, 2010 Jan-Feb;31(1):256-62.
    PMID: 19854613 DOI: 10.1016/j.ridd.2009.09.009
    Studies have shown that differences between children with and without handwriting difficulties lie not only in the written product (static data) but also in dynamic data of handwriting process. Since writing system varies among countries and individuals, this study was conducted to determine the feasibility of using quantitative outcome measures of children's drawing to identify children who are at risk of handwriting difficulties. A sample of 143 first graders of a normal primary school was investigated regarding their handwriting ability. The children were divided into two groups: test and control. Ten children from test group and 40 children from control group were individually tested for their Visual Motor Integration skills. Analysis on dynamic data indicated significant differences between the two groups in temporal and spatial measures of the drawing task performance. Thus, kinematic analysis of children's drawing is feasible to provide performance characteristic of handwriting ability, supporting its use in screening for handwriting difficulty.
    Matched MeSH terms: Computer Graphics
  12. Khuan LY, Bister M, Blanchfield P, Salleh YM, Ali RA, Chan TH
    Australas Phys Eng Sci Med, 2006 Jun;29(2):216-28.
    PMID: 16845928
    Increased inter-equipment connectivity coupled with advances in Web technology allows ever escalating amounts of physiological data to be produced, far too much to be displayed adequately on a single computer screen. The consequence is that large quantities of insignificant data will be transmitted and reviewed. This carries an increased risk of overlooking vitally important transients. This paper describes a technique to provide an integrated solution based on a single algorithm for the efficient analysis, compression and remote display of long-term physiological signals with infrequent short duration, yet vital events, to effect a reduction in data transmission and display cluttering and to facilitate reliable data interpretation. The algorithm analyses data at the server end and flags significant events. It produces a compressed version of the signal at a lower resolution that can be satisfactorily viewed in a single screen width. This reduced set of data is initially transmitted together with a set of 'flags' indicating where significant events occur. Subsequent transmissions need only involve transmission of flagged data segments of interest at the required resolution. Efficient processing and code protection with decomposition alone is novel. The fixed transmission length method ensures clutter-less display, irrespective of the data length. The flagging of annotated events in arterial oxygen saturation, electroencephalogram and electrocardiogram illustrates the generic property of the algorithm. Data reduction of 87% to 99% and improved displays are demonstrated.
    Matched MeSH terms: Computer Graphics*
  13. Kolivand H, Sunar MS
    PLoS One, 2014;9(9):e108334.
    PMID: 25268480 DOI: 10.1371/journal.pone.0108334
    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.
    Matched MeSH terms: Computer Graphics
  14. Krishnan R, Kueh ST, Lin YM, Samsuri MF, Seng OC, Mahadavan M, et al.
    World Health Forum, 1990;11(3):310-1.
    PMID: 2291796
    Matched MeSH terms: Computer Graphics*
  15. Liew TS, Schilthuizen M
    PLoS One, 2016;11(6):e0157069.
    PMID: 27280463 DOI: 10.1371/journal.pone.0157069
    Quantitative analysis of organismal form is an important component for almost every branch of biology. Although generally considered an easily-measurable structure, the quantification of gastropod shell form is still a challenge because many shells lack homologous structures and have a spiral form that is difficult to capture with linear measurements. In view of this, we adopt the idea of theoretical modelling of shell form, in which the shell form is the product of aperture ontogeny profiles in terms of aperture growth trajectory that is quantified as curvature and torsion, and of aperture form that is represented by size and shape. We develop a workflow for the analysis of shell forms based on the aperture ontogeny profile, starting from the procedure of data preparation (retopologising the shell model), via data acquisition (calculation of aperture growth trajectory, aperture form and ontogeny axis), and data presentation (qualitative comparison between shell forms) and ending with data analysis (quantitative comparison between shell forms). We evaluate our methods on representative shells of the genera Opisthostoma and Plectostoma, which exhibit great variability in shell form. The outcome suggests that our method is a robust, reproducible, and versatile approach for the analysis of shell form. Finally, we propose several potential applications of our methods in functional morphology, theoretical modelling, taxonomy, and evolutionary biology.
    Matched MeSH terms: Computer Graphics*
  16. Mousavi Kahaki SM, Nordin MJ, Ashtari AH, J Zahra S
    PLoS One, 2016;11(3):e0149710.
    PMID: 26985996 DOI: 10.1371/journal.pone.0149710
    An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics--such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient--are insufficient for achieving adequate results under different image deformations. Thus, new descriptor's similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence.
    Matched MeSH terms: Computer Graphics
  17. Mujtaba G, Shuib L, Raj RG, Rajandram R, Shaikh K, Al-Garadi MA
    J Biomed Inform, 2018 06;82:88-105.
    PMID: 29738820 DOI: 10.1016/j.jbi.2018.04.013
    Text categorization has been used extensively in recent years to classify plain-text clinical reports. This study employs text categorization techniques for the classification of open narrative forensic autopsy reports. One of the key steps in text classification is document representation. In document representation, a clinical report is transformed into a format that is suitable for classification. The traditional document representation technique for text categorization is the bag-of-words (BoW) technique. In this study, the traditional BoW technique is ineffective in classifying forensic autopsy reports because it merely extracts frequent but discriminative features from clinical reports. Moreover, this technique fails to capture word inversion, as well as word-level synonymy and polysemy, when classifying autopsy reports. Hence, the BoW technique suffers from low accuracy and low robustness unless it is improved with contextual and application-specific information. To overcome the aforementioned limitations of the BoW technique, this research aims to develop an effective conceptual graph-based document representation (CGDR) technique to classify 1500 forensic autopsy reports from four (4) manners of death (MoD) and sixteen (16) causes of death (CoD). Term-based and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) based conceptual features were extracted and represented through graphs. These features were then used to train a two-level text classifier. The first level classifier was responsible for predicting MoD. In addition, the second level classifier was responsible for predicting CoD using the proposed conceptual graph-based document representation technique. To demonstrate the significance of the proposed technique, its results were compared with those of six (6) state-of-the-art document representation techniques. Lastly, this study compared the effects of one-level classification and two-level classification on the experimental results. The experimental results indicated that the CGDR technique achieved 12% to 15% improvement in accuracy compared with fully automated document representation baseline techniques. Moreover, two-level classification obtained better results compared with one-level classification. The promising results of the proposed conceptual graph-based document representation technique suggest that pathologists can adopt the proposed system as their basis for second opinion, thereby supporting them in effectively determining CoD.
    Matched MeSH terms: Computer Graphics
  18. Nabilah Najmuddin, Nor Haniza Sarmin, Ahmad Erfanian
    MATEMATIKA, 2019;35(2):149-155.
    MyJurnal
    A domination polynomial is a type of graph polynomial in which its coefficients represent the number of dominating sets in the graph. There are many researches being done on the domination polynomial of some common types of graphs but not yet for graphs associated to finite groups. Two types of graphs associated to finite groups are the conjugate graph and the conjugacy class graph. A graph of a group G is called a conjugate graph if the vertices are non-central elements of G and two distinct vertices are adjacent if they are conjugate to each other. Meanwhile, a conjugacy class graph of a group G is a graph in which its vertices are the non-central conjugacy classes of G and two distinct vertices are connected if and only if their class cardinalities are not coprime. The conjugate and conjugacy class graph of dihedral groups can be expressed generally as a union of complete graphs on some vertices. In this paper, the domination polynomials are computed for the conjugate and conjugacy class graphs of the dihedral groups.
    Matched MeSH terms: Computer Graphics
  19. Nadia Abdul Rani, Faieza Abdul Aziz, Rohidatun M,W.
    MyJurnal
    Interactive learning is a pedagogical model that encourages students to be part of the lesson instead of passive observers, quietly sitting at a desk taking notes or memorizing information. Students interact with the material, each other and the teacher in an active way. The new emerging technologies that can overcome some of the potential difficulties in this area includes computer graphics, augmented reality, computational dynamics, and virtual worlds. Therefore, the manufacturing industry relies on new design concepts and methods undertake the challenges in integrating technologies to expedite the march towards industrial revolution 4.0.This paper reviews and investigates the current context of the use of interactive learning such as Virtual Reality(VR),Augmented Reality(AR),Computer aided design and manufacturing(CADCAM), computer graphics, computational dynamics and new emerging technologies that effect on students and lectures in learning and teaching environments for Manufacturing Engineering. Interactive learning is part of the factors that could influence the self-learning and regulations environments.
    Matched MeSH terms: Computer Graphics
  20. Naher H, Abdullah FA, Akbar MA
    PLoS One, 2013;8(5):e64618.
    PMID: 23741355 DOI: 10.1371/journal.pone.0064618
    The generalized and improved (G'/G)-expansion method is a powerful and advantageous mathematical tool for establishing abundant new traveling wave solutions of nonlinear partial differential equations. In this article, we investigate the higher dimensional nonlinear evolution equation, namely, the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation via this powerful method. The solutions are found in hyperbolic, trigonometric and rational function form involving more parameters and some of our constructed solutions are identical with results obtained by other authors if certain parameters take special values and some are new. The numerical results described in the figures were obtained with the aid of commercial software Maple.
    Matched MeSH terms: Computer Graphics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links