PURPOSE: The purpose is to describe the new species morphologically and molecularly and provide new information of its evolutionally relationships with other species of the subgenus.
METHODS: Standard methods of collection and examination of marine hosts, processing and illustrating of specimens, and taxonomic identification of parasites using the extensive collection of the lead author were used. Specimens were further studied using energy-dispersive X-ray analysis and ion sectioning of hooks, SEM analysis, and molecular sequencing. Type specimens were deposited at the Harold W. Manter Lab. collection, Lincoln, Nebraska.
RESULTS: Acanthogyrus (Acanthosentis) fusiformis n. sp. is described from the catfish, Arius sp. (Ariidae: Siluriformes) off the Pacific Coast of Vietnam at Bac Lieu in the Gulf of Thailand. The three other marine Indian species include A. (A.) arii Bilqees, 1971 which is also described from a similar catfish, Arius serratus Day off the Karachi coast in the Arabian Sea, Indian Ocean. Our new species from Vietnam is distinguished from the other 46 species by a combination of characters including a small fusiform trunk, complete circles of small hollow spines covering the entire trunk, prominent double apical organs often extending posteriorly past posterior hooks, middle and posterior hooks of equal size slightly smaller than anterior hooks, large neck continuous with the outline of the proboscis without distinct separation, big drop-shaped cephalic ganglion, extension of the proboscis receptacle anteriorly past the base of the proboscis up to the insertion point of the posterior hooks, presence of two para-receptacle structures (PRSs), free unattached thick lemnisci, short female reproductive system with filamentous attachment of the distal end of the uterine bell to the ventral body wall, and small narrowly ellipsoid eggs with thickened polar ends. Partial sequences of the 18S and internal transcribed spacers (ITS1-5.8S-ITS2) of ribosomal RNA were generated and used for phylogenetic analyses to confirm the taxonomic identity of Acanthogyrus (Acanthosentis) fusiformis n. sp.
CONCLUSIONS: We describe unique morphological features of A. fusiformis never before known in the subgenus Acanthosentis. The uniqueness of A. fusiformis is further demonstrated by its EDXA fingerprint characterized by high levels of calcium and phosphorous in hooks. The zoogeography of species of Acanthosentis is elucidated in the Indian subcontinent, the Caribbean, China, and Africa. Molecular data have been available only in few species of Acanthogyrus (Acanthosentis) to date on GenBank database. For 18S, only two sequences from unknown Acanthosentis sp. from India are available, while for the ITS1-5.8S-ITS2 region, only sequences of A. cheni from China and of two unidentified species from Malaysia are available. Additional studies of species of Acanthosentis based on morphological and molecular genetic data will be needed to reconstruct the evolutionary history and phylogenetic affinities of this group of acanthocephalans.
METHODS: H. contortus specimens (n = 57) were isolated from wild blue sheep (Pseudois nayaur) inhabiting Helan Mountains (HM), China and additional H. contortus specimens (n = 20) were isolated from domestic sheep that were grazed near the natural habitat of the blue sheep. Complete ITS2 (second internal transcribed spacer) sequences and partial sequences of the nad4 (nicotinamide dehydrogenase subunit 4 gene) gene were amplified to determine the sequence variations and population genetic diversities between these two populations. Also, 142 nad4 haplotype sequences of H. contortus from seven other geographical regions of China were retrieved from database to further examine the H. contortus population structure.
RESULTS: Sequence analysis revealed 10 genotypes (ITS2) and 73 haplotypes (nad4) among the 77 specimens, with nucleotide diversities of 0.007 and 0.021, respectively, similar to previous studies in other countries, such as Pakistan, Malaysia and Yemen. Phylogenetic analyses (BI, MP, NJ) of nad4 sequences showed that there were no noticeable boundaries among H. contortus populations from different geographical origin and population genetic analyses revealed that most of the variation (94.21%) occurred within H. contortus populations. All phylogenetic analyses indicated that there was little genetic differentiation but a high degree of gene flow among the H. contortus populations among wild blue sheep and domestic ruminants in China.
CONCLUSIONS: The current work is the first genetic characterization of H. contortus isolated from wild blue sheep in the Helan Mountains region. The results revealed a low genetic differentiation and high degree of gene flow between the H. contortus populations from sympatric wild blue sheep and domestic sheep, indicating regular cross-infection between the sympatrically reared ruminants.
METHODS: 152 H. contortus individual adult worms were collected from seven different geographical regions in China. The second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA and mitochondrial nicotinamide dehydrogenase subunit 4 gene (nad4) were amplified by polymerase chain reaction (PCR) and sequenced directly. The sequence variations and population genetic diversities were determined.
RESULTS: Nucleotide sequence analyses revealed 18 genotypes (ITS-2) and 142 haplotypes (nad4) among the 152 worms, with nucleotide diversities of 2.6% and 0.027, respectively, consistent with previous reports from other countries, including Australia, Brazil, Germany, Italy, Malaysia, Sweden, the USA and Yemen. Population genetic analyses revealed that 92.4% of nucleotide variation was partitioned within populations; there was no genetic differentiation but a high gene flow among Chinese populations; some degree of genetic differentiation was inferred between some specimens from China and those from other countries.
CONCLUSIONS: This is the first study of genetic variation within H. contortus in China. The results revealed high within-population variations, low genetic differentiation and high gene flow among different populations of H. contortus in China. The present results could have implications for studying the epidemiology and ecology of H. contortus in China.