Displaying publications 1 - 20 of 135 in total

Abstract:
Sort:
  1. Tan JAMA, Yap SF, Tan KL, Wong YC, Wee YC, Kok JL
    Acta Haematol., 2003;109(4):169-75.
    PMID: 12853688 DOI: 10.1159/000070965
    Molecular characterization of the compound heterozygous condition - (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia - in four families showing mild beta-thalassemia intermedia was carried out using DNA amplification techniques. Using the Amplification Refractory Mutation System (ARMS) to confirm the beta-mutations and DNA amplification to detect the 100-kb Chinese-specific (G)gamma((A)gammadeltabeta)(o)-deletion, ()two families were confirmed to possess (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia with the IVSII No. 654 beta(+)-allele. In the third family, the (G)gamma((A)gammadeltabeta)(o)-deletion was confirmed in the father and the mother was a beta-thalassemia carrier with the cd 41-42 beta(o)-allele. Their affected child with (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia was found to be transfusion dependent. The same (G)gamma((A)gammadeltabeta)(o)-deletion and beta-thalassemia (cd 41-42) was also confirmed in a fourth family. In addition, the mother was also diagnosed with Hb H disease (genotype -alpha(3.7)/-(SEA)). Both the children were found to possess (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia but they were not transfusion dependent and this could be due to co-inheritance of alpha-thalassemia-2 (genotype-alpha(3.7)/alphaalpha) in the children together with their compound heterozygous condition.
    Matched MeSH terms: DNA Mutational Analysis
  2. Fucharoen S, Fucharoen G, Ata K, Aziz S, Hashim S, Hassan K, et al.
    Acta Haematol., 1990;84(2):82-8.
    PMID: 2120891 DOI: 10.1159/000205034
    The spectrum of beta-thalassemia mutations in Malaysia has been determined in 45 beta-thalassemia chromosomes using dot blot hybridization of the polymerase chain reaction amplified DNA and direct DNA sequencing. Eleven different molecular defects, including those previously detected in Chinese, Asian Indians, and American blacks, and a novel frameshift mutation causing beta zero-thalassemia were detected. Since this novel mutation, a T deletion in codon 15 creates a new restriction site for EcoRII enzyme; the mutation could be detected by EcoRII digestion of the appropriate amplified fragment. The results of the present study provide additional information on the molecular heterogeneity of beta-thalassemia in this population. We also demonstrated the nonradioactive detection method of the beta-thalassemia mutation based upon the digoxigenin-labeled oligonucleotide probes.
    Matched MeSH terms: DNA Mutational Analysis
  3. Yusoff AA, Abdullah J, Abdullah MR, Mohd Ariff AR, Isa MN
    Acta Neurochir (Wien), 2004 Jun;146(6):595-601.
    PMID: 15168228
    Alteration of the tumor suppressor gene p53 is considered to be a critical step in the development of human cancer. Changes in this gene have been detected in a wide range of human tumours, including gliomas. In glioma, the presence of p53 gene alterations has been associated with worse prognosis.
    Matched MeSH terms: DNA Mutational Analysis*
  4. Rethanavelu K, Fung JLF, Chau JFT, Pei SLC, Chung CCY, Mak CCY, et al.
    Am J Med Genet A, 2020 02;182(2):279-288.
    PMID: 31755649 DOI: 10.1002/ajmg.a.61412
    Alström syndrome (AS) is a monogenic syndromic ciliopathy caused by mutations in the ALMS1 (Alström Syndrome 1) gene. A total of 21 subjects with AS from 20 unrelated Chinese families were recruited. Our cohort consists of 9 females and 12 males, between 5 months and 20 years old. The first symptom(s) appeared between 3 and 24 months. They were recorded to be either visual impairments (83%) or dilated cardiomyopathy (17%). Median time from symptom onset to seeking medical attention was 6 months (3-36 months) and the median time needed to reach the final molecular diagnosis is 54 months (6-240 months). System involvement at the time of the survey was as follows: visual symptoms (100%), hearing Impairment (67%), endocrine symptoms (43%), neurological symptoms (19%), hepatic symptoms (14%), and renal Involvement (14%). These findings are comparable to data reported in the literature. However, the proportion of subjects with cognitive impairment (33%) and behavioral problems (19%) were higher. Thirty-three unique mutations were identified in the ALMS1 gene, of which 18 are novel mutations classified as pathogenic/likely pathogenic according to the American College of Medical Genetics (ACMG) guideline. Four recurrent mutations were identified in the cohort, in particular; c.2084C>A, p. (Ser695Ter), is suggestive to be a founder mutation in people of Chinese ancestry. The participation of AS subjects of differing ethnicities is essential to improve the algorithm in facial recognition/phenotyping, as well as to understand the mutation spectrum beyond than just those of European ancestry.
    Matched MeSH terms: DNA Mutational Analysis/methods
  5. Koh DXR, Raja Sabudin RZA, Mohd Yusoff M, Hussin NH, Ahmad R, Othman A, et al.
    Ann. Hum. Genet., 2017 Sep;81(5):205-212.
    PMID: 28620953 DOI: 10.1111/ahg.12201
    Thalassaemia is a public health problem in Malaysia, with each ethnic group having their own common mutations. However, there is a lack on data on the prevalence and common mutations among the indigenous people. This cross-sectional study was performed to determine the common mutations of α- and β-thalassaemia among the subethnic groups of Senoi, the largest Orang Asli group in Peninsular Malaysia. Blood samples collected from six Senoi subethnic groups were analysed for full blood count and haemoglobin analysis (HbAn). Samples with abnormal findings were then screened for α- and β-globin gene mutations. Out of the 752 samples collected, 255 showed abnormal HbAn results, and 122 cases showing abnormal red cell indices with normal HbAn findings were subjected to molecular screening. DNA analysis revealed a mixture of α- and β-globin gene mutations with 25 concomitant cases. The types of gene abnormalities detected for α-thalassaemia were termination codon (T>C) Hb CS (αCS α), Cd59 (G>A) haemoglobin Adana (Hb Adana) (αCd59 α), initiation codon (ATG>A-G) (αIniCd α), two-gene deletion (-SEA ), and single-gene 3.7-kb deletion (-α3.7 ). For β-thalassaemia, there were Cd26 (G>A) Hb E (βE ), Cd19 (A>G) Haemoglobin Malay (Hb Malay) (βCd19 ), and IVS 1-5 (G>C) (βIVS 1-5 ).
    Matched MeSH terms: DNA Mutational Analysis
  6. Hussin A, Md Nor NS, Ibrahim N
    Antiviral Res, 2013 Nov;100(2):306-13.
    PMID: 24055837 DOI: 10.1016/j.antiviral.2013.09.008
    Eleven strains of acyclovir (ACV)-resistant herpes simplex virus type 1 (HSV-1) were generated from HSV-1 clinical isolates by exposure to ACV. Genotype of the thymidine kinase (TK) and DNA polymerase (pol) genes from these mutants were further analyzed. Genotypic analysis revealed four non-synonymous mutations in TK gene associated with gene polymorphism and two to three non-synonymous mutations in DNA pol gene. Seven and six strains contained at least one resistance-associated mutation at TK and DNA pol gene, respectively. Resistance-associated mutations within the TK gene consisted of 64% of non-synonymous frameshift mutations within the homopolymer region of G's and C's, and 36% of non-synonymous nucleotide substitutions of the conserved gene region (C336Y, R51W and R222H), nucleotide that produced stop codon (L288Stop) and two amino acid substitutions outside the conserved region (E39G & L208F). There were 10 non-synonymous amino acid substitutions located outside the conserved region with the unclear significance to confer resistance observed. Resistance-associated mutations in DNA pol gene include insertion of G at the homopolymer region of G's (794-797) and amino acid substitutions inside (V621S) or outside (H1228D) the conserved region. In silico analysis of the mutated TK (C336Y, R51W and L208F), and DNA pol (V621S and H1228D) suggested structural changes that might alter the stability of these proteins. However, there were several mutations with unclear significance to confer ACV-resistance identified, especially mutations outside the conserved region.
    Matched MeSH terms: DNA Mutational Analysis
  7. Gill HK, Kumar HC, Dhaliwal JS, Zabidi F, Sendut IH, Noah RM, et al.
    Asian Pac J Allergy Immunol, 2012 Dec;30(4):313-20.
    PMID: 23393912
    BACKGROUND: The most common autosomal form of Chronic Granulomatous Disease, p47-phox deficient CGD, generally features a GT (deltaGT) deletion in the GTGT sequence at the start of exon 2 on the NCF-1 gene. This consistency is due to the coexistence of and the recombination between 2 homologous pseudogenes (psi s) and NCF-1. The GTGT: deltaGT ratio mirrors the NCF-I: NCF-1 psi ratio and is 2:4 in normal individuals.
    OBJECTIVE: To determine the molecular basis of the Autosomal-CGD in a family with 2 children, a male and female, affected by the disease. The female patient suffered recurrent infection, retinitis pigmentosa and discoid lupus.
    METHODS: Chemiluminescence (CL) was used to study the respiratory burst, while genetic analysis was done by RT-PCR, PCR, deltaGT and the 20bp gene scans.
    RESULTS: The CL response of the patient was profoundly low. The patient's p47-phox band was absent in the RT-PCR for NADPH-oxidase component mRNAs. The deltaGT scan showed that the patient's GTGT: deltaGT ratio was 0:6, the parents' and the younger brother's was 1:5 and the younger sister's was 2:4. Examination of other NCF-1/ NCF-1 psi s differences showed that the father had a compound deltaGT allele ie. deltaGT-20bp, inherited by the patient, and that both parents had compound GTGT alleles with a single 30bp segment in intron 1.
    CONCLUSIONS: The patient was a classic, homozygous deltaGT p47-phox deficient CGD with one allele harbouring a compound deltaGT-20bp gene. The deltaGT and 20bp gene scans offer a relatively simple and efficient means of defining a p47-phox deficient CGD patient.
    Key words: Chronic Granulomatous Disease, Primary Immunodeficiency, NCF-1, p47-phox, NADPH-oxidas
    Matched MeSH terms: DNA Mutational Analysis
  8. Yunus NM, Johan MF, Ali Nagi Al-Jamal H, Husin A, Hussein AR, Hassan R
    Asian Pac J Cancer Prev, 2015;16(12):4869-72.
    PMID: 26163606
    BACKGROUND: Mutations of the FMS-like tyrosine kinase-3 (FLT3) receptor gene may promote proliferation via activation of multiple signaling pathways. FLT3-internal tandem duplication (FLT3-ITD) is the most common gene alteration found in patients diagnosed with acute myeloid leukaemia (AML) and has been associated with poor prognosis.

    MATERIALS AND METHODS: We performed mutational analysis of exons 14-15 and 20 of the FLT3 gene in 54 AML patients using PCR-CSGE (conformational sensitive gel electrophoresis) followed by sequencing analysis to characterise FLT3 mutations in adult patients diagnosed with AML at Hospital USM, Kelantan, Northeast Peninsular Malaysia.

    RESULTS: FLT3 exon 14-15 mutations were identified in 7 of 54 patients (13%) whereas no mutation was found in FLT3 exon 20. Six ITDs and one non-ITD mutation were found in exon 14 of the juxtamembrane (JM) domain of FLT3. FLT3-ITD mutations were associated with a significantly higher blast percentage (p-value=0.008) and white blood cell count (p-value=0.023) but there was no significant difference in median overall survival time for FLT3-ITD+/FLT3-ITD- within 2 years (p-value=0.374).

    CONCLUSIONS: The incidence of FLT3-ITD in AML patients in this particular region of Malaysia is low compared to the Western world and has a significant association with WBC and blast percentage.

    Matched MeSH terms: DNA Mutational Analysis
  9. Mohamed Yusoff AA, Zulfakhar FN, Sul’ain MD, Idris Z, Abdullah JM
    Asian Pac J Cancer Prev, 2016 12 01;17(12):5195-5201.
    PMID: 28125199
    Background: Brain tumors, constituting one of the most deadly forms of cancer worldwide, result from the accumulation of multiple genetic and epigenetic alterations in genes and signaling pathways. Isocitrate dehydrogenase enzyme isoform 1 (IDH1) mutations are frequently identified in primary brain tumors and acute myeloid leukemia. Studies on IDH1 gene mutations have been extensively performed in various populations worldwide but not in Malaysia. This work was conducted to study the prevalence of IDH1 c.395G>A (R132H) hotspot mutations in a group of Malaysian patients with brain tumors in order to gain local data for the IDH1 mutation profile in our population. Methods: Mutation analysis of c.395G>A (R132H) of IDH1 was performed in 40 brain tumor specimens by the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP) and then verified by direct sequencing. Associations between the IDH1 c.395G>A (R132H) mutation and clinicopathologic characteristics were also analyzed. Results: The IDH1 c.395G>A (R132H) mutation was detected in 14/40 patients (35%). A significant association was found with histological tumor types, but not with age, gender and race. Conclusions: IDH1 is frequently mutated and associated with histological subtypes in Malay brain tumors.
    Matched MeSH terms: DNA Mutational Analysis
  10. Mat Yusoff Y, Abu Seman Z, Othman N, Kamaluddin NR, Esa E, Zulkiply NA, et al.
    Asian Pac J Cancer Prev, 2019 06 01;20(6):1749-1755.
    PMID: 31244296 DOI: 10.31557/APJCP.2019.20.6.1749
    Objective: The most frequent acquired molecular abnormalities and important prognostic indicators in patients
    with Acute Myeloid Leukaemia (AML) are fms-like tyrosine kinase-3 gene (FLT3) and nucleophosmin-1 (NPM1)
    mutations. Our study aims to develop a cost effective and comprehensive in-house conventional PCR method for
    detection of FLT3-ITD, FLT3-D835 and NPM1 mutations and to evaluate the frequency of these mutations in patients
    with cytogenetically normal (CN) AML in our population. Methods: A total of 199 samples from AML patients (95
    women, 104 men) were included in the study. Mutation analyses were performed using polymerase chain reaction
    (PCR) and gene sequencing. Result: Sixty-eight patients were positive for the mutations. FLT3-ITD mutations were
    detected in 32 patients (16.1%), followed by FLT3-D835 in 5 (2.5%) and NPM1 in 54 (27.1%). Double mutations of
    NPM1 and FLT3-ITD were detected in 23 cases (11.6%). Assays validation were performed using Sanger sequencing
    and showed 100% concordance with in house method. Conclusion: The optimized in-house PCR assays for the
    detection of FLT3-ITD, FLT3-D835 and NPM1 mutations in AML patients were robust, less labour intensive and cost
    effective. These assays can be used as diagnostic tools for mutation detection in AML patients since identification of
    these mutations are important for prognostication and optimization of patient care.
    Matched MeSH terms: DNA Mutational Analysis
  11. Nasuha NA, Daud AH, Ghazali MM, Yusoff AA, Zainuddin N, Abdullah JM, et al.
    Asian J Surg, 2003 Apr;26(2):120-5.
    PMID: 12732498
    A case of pleomorphic xanthoastrocytoma in a 10-year-old Malay boy is reported. The patient presented with headache and epilepsy. On computed tomography, a ring-enhancing low-density lesion was observed in the left fronto-temporal area. During surgery, a cystic tumour containing serous fluid was found and almost totally removed. Histologically, the tumour exhibited marked pleomorphism of oval and spindle-shaped cells intermixed with uni- and multinucleated giant cells, and xanthomatous cells with foamy cytoplasm. The tumour displayed pericellular reticulin and periodic acid-Schiff positive granules. Focally, six mitotic characters per 10 high-power fields were seen, and necrosis was confined only to the inner lining of the cyst. Mutational analysis showed that a frameshift mutation (a 4-bp deletion) in the p53 gene had occurred in codons 273 and 274 of exon 8. No mutation was detected in the p16 gene. No allelic loss and/or loss of heterozygosity were observed on chromosome 10 using microsatellite marker D105532. The patient was treated with postoperative radiotherapy because of histological anaplasia and the presence of residual tumour. The patient showed marked neurological recovery after a follow-up period of 2 years.
    Matched MeSH terms: DNA Mutational Analysis
  12. Mohd Nor NS, Al-Khateeb AM, Chua YA, Mohd Kasim NA, Mohd Nawawi H
    BMC Pediatr, 2019 04 11;19(1):106.
    PMID: 30975109 DOI: 10.1186/s12887-019-1474-y
    BACKGROUND: Familial hypercholesterolaemia (FH) is the most common inherited metabolic disease with an autosomal dominant mode of inheritance. It is characterised by raised serum levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-c), leading to premature coronary artery disease. Children with FH are subjected to early and enhanced atherosclerosis, leading to greater risk of coronary events, including premature coronary artery disease. To the best of our knowledge, this is the first report of a pair of monochorionic diamniotic identical twins with a diagnosis of heterozygous FH, resulting from mutations in both LDLR and ABCG8 genes.

    CASE PRESENTATION: This is a rare case of a pair of 8-year-old monochorionic diamniotic identical twin, who on family cascade screening were diagnosed as definite FH, according to the Dutch Lipid Clinic Criteria (DLCC) with a score of 10. There were no lipid stigmata noted. Baseline lipid profiles revealed severe hypercholesterolaemia, (TC = 10.5 mmol/L, 10.6 mmol/L; LDL-c = 8.8 mmol/L, 8.6 mmol/L respectively). Their father is the index case who initially presented with premature CAD, and subsequently diagnosed as FH. Family cascade screening identified clinical FH in other family members including their paternal grandfather who also had premature CAD, and another elder brother, aged 10 years. Genetic analysis by targeted next-generation sequencing using MiSeq platform (Illumina) was performed to detect mutations in LDLR, APOB100, PCSK9, ABCG5, ABCG8, APOE and LDLRAP1 genes. Results revealed that the twin, their elder brother, father and grandfather are heterozygous for a missense mutation (c.530C > T) in LDLR that was previously reported as a pathogenic mutation. In addition, the twin has heterozygous ABCG8 gene mutation (c.55G > C). Their eldest brother aged 12 years and their mother both had normal lipid profiles with absence of LDLR gene mutation.

    CONCLUSION: A rare case of Asian monochorionic diamniotic identical twin, with clinically diagnosed and molecularly confirmed heterozygous FH, due to LDLR and ABCG8 gene mutations have been reported. Childhood FH may not present with the classical physical manifestations including the pathognomonic lipid stigmata as in adults. Therefore, childhood FH can be diagnosed early using a combination of clinical criteria and molecular analyses.

    Matched MeSH terms: DNA Mutational Analysis
  13. Li X, Ting TH, Sheng H, Liang CL, Shao Y, Jiang M, et al.
    BMC Pediatr, 2018 03 06;18(1):101.
    PMID: 29510678 DOI: 10.1186/s12887-018-1060-8
    BACKGROUND: There is scarcity of information on the clinical features and genetics of glucokinase-maturity-onset diabetes of the young (GCK-MODY) in China. The aim of the study was to investigate the clinical and molecular characteristics of Chinese children with GCK-MODY.

    METHODS: Eleven children with asymptomatic hyperglycemia and clinically suspected GCK-MODY were identified from the database of children with diabetes in the biggest children's hospital in South China. Clinical data were obtained from medical records. Blood was collected from the patients and their parents for glucokinase (GCK) gene analysis. Parents without diabetes were tested for fasting glucose and HbA1c. Clinical information and blood for GCK gene analysis were obtained from grandparents with diabetes. GCK gene mutational analysis was performed by polymerase chain reaction and direct sequencing. Patients without a GCK gene mutation were screened by targeted next-generation sequencing (NGS) technology for other MODY genes.

    RESULTS: Nine children tested positive for GCK gene mutations while two were negative. The nine GCK-MODY patients were from unrelated families, aged 1 month to 9 years and 1 month at first detection of hyperglycaemia. Fasting glucose was elevated (6.1-8.5 mmol/L), HbA1c 5.2-6.7% (33.3-49.7 mmol/mol), both remained stable on follow-up over 9 months to 5 years. Five detected mutations had been previously reported: p.Val182Met, c.679 + 1G > A, p.Gly295Ser, p.Arg191Gln and p.Met41Thr. Four mutations were novel: c.483 + 2 T > A, p.Ser151del, p.Met57GlyfsX29 and p.Val374_Ala377del. No mutations were identified in the other two patients, who were also tested by NGS.

    CONCLUSIONS: GCK gene mutations are detected in Chinese children and their family members with typical clinical features of GCK-MODY. Four novel mutations are detected.
    Matched MeSH terms: DNA Mutational Analysis
  14. Ngoi ST, Thong KL
    Biomed Res Int, 2014;2014:718084.
    PMID: 25371903 DOI: 10.1155/2014/718084
    The increased Salmonella resistance to quinolones and fluoroquinolones is a public health concern in the Southeast Asian region. The objective of this study is to develop a high resolution melt curve (HRM) assay to rapidly screen for mutations in quinolone-resistant determining region (QRDR) of gyrase and topoisomerase IV genes. DNA sequencing was performed on 62 Salmonella strains to identify mutations in the QRDR of gyrA, gyrB, parC, and parE genes. Mutations were detected in QRDR of gyrA (n = 52; S83F, S83Y, S83I, D87G, D87Y, and D87N) and parE (n = 1; M438I). Salmonella strains with mutations within QRDR of gyrA are generally more resistant to nalidixic acid (MIC 16 > 256 μg/mL). Mutations were uncommon within the QRDR of gyrB, parC, and parE genes. In the HRM assay, mutants can be distinguished from the wild-type strains based on the transition of melt curves, which is more prominent when the profiles are displayed in difference plot. In conclusion, HRM analysis allows for rapid screening for mutations at the QRDRs of gyrase and topoisomerase IV genes in Salmonella. This assay markedly reduced the sequencing effort involved in mutational studies of quinolone-resistance genes.
    Matched MeSH terms: DNA Mutational Analysis/methods*
  15. Al-Marzooq F, Mohd Yusof MY, Tay ST
    Biomed Res Int, 2014;2014:601630.
    PMID: 24860827 DOI: 10.1155/2014/601630
    Ninety-three Malaysian extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates were investigated for ciprofloxacin resistance. Two mismatch amplification mutation (MAMA) assays were developed and used to facilitate rapid detection of gyrA and parC mutations. The isolates were also screened for plasmid-mediated quinolone resistance (PMQR) genes including aac(6')-Ib-cr, qepA, and qnr. Ciprofloxacin resistance (MICs 4- ≥ 32  μ g/mL) was noted in 34 (37%) isolates, of which 33 isolates had multiple mutations either in gyrA alone (n = 1) or in both gyrA and parC regions (n = 32). aac(6')-Ib-cr was the most common PMQR gene detected in this study (n = 61), followed by qnrB and qnrS (n = 55 and 1, resp.). Low-level ciprofloxacin resistance (MICs 1-2  μ g/mL) was noted in 40 (43%) isolates carrying qnrB accompanied by either aac(6')-Ib-cr (n = 34) or a single gyrA 83 mutation (n = 6). Ciprofloxacin resistance was significantly associated with the presence of multiple mutations in gyrA and parC regions. While the isolates harbouring gyrA and/or parC alteration were distributed into 11 PFGE clusters, no specific clusters were associated with isolates carrying PMQR genes. The high prevalence of ciprofloxacin resistance amongst the Malaysian ESBL-producing K. pneumoniae isolates suggests the need for more effective infection control measures to limit the spread of these resistant organisms in the hospital.
    Matched MeSH terms: DNA Mutational Analysis/methods*
  16. Sasongko TH, Gunadi, Yusoff S, Atif AB, Fatemeh H, Rani A, et al.
    Brain Dev, 2010 May;32(5):385-9.
    PMID: 19664890 DOI: 10.1016/j.braindev.2009.06.008
    The majority of spinal muscular atrophy (SMA) patients showed homozygous deletion or other mutations of SMN1. However, the genetic etiology of a significant number of SMA patients has not been clarified. Recently, mutation in the gene underlying cat SMA, limb expression 1 (LIX1), has been reported. Similarity in clinical and pathological features of cat and human SMA may give an insight into possible similarity of the genetic etiology.
    Matched MeSH terms: DNA Mutational Analysis
  17. Watihayati MS, Fatemeh H, Marini M, Atif AB, Zahiruddin WM, Sasongko TH, et al.
    Brain Dev, 2009 Jan;31(1):42-5.
    PMID: 18842367 DOI: 10.1016/j.braindev.2008.08.012
    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations in the SMN1 gene. The SMN2 gene is highly homologous to SMN1 and has been reported to be correlated with severity of the disease. The clinical presentation of SMA varies from severe to mild, with three clinical subtypes (type I, type II, and type III) that are assigned according to age of onset and severity of the disease. Here, we aim to investigate the potential association between the number of copies of SMN2 and the deletion in the NAIP gene with the clinical severity of SMA in patients of Malaysian origin. Forty-two SMA patients (14 of type I, 20 type II, and 8 type III) carrying deletions of the SMN1 gene were enrolled in this study. SMN2 copy number was determined by fluorescence-based quantitative polymerase chain reaction assay. Twenty-nine percent of type I patients carried one copy of SMN2, while the remaining 71% carried two copies. Among the type II and type III SMA patients, 29% of cases carried two copies of the gene, while 71% carried three or four copies of SMN2. Deletion analysis of NAIP showed that 50% of type I SMA patients had a homozygous deletion of exon 5 of this gene and that only 10% of type II SMA cases carried a homozygous deletion, while all type III patients carried intact copies of the NAIP gene. We conclude that there exists a close relationship between SMN2 copy number and SMA disease severity, suggesting that the determination of SMN2 copy number may be a good predictor of SMA disease type. Furthermore, NAIP gene deletion was found to be associated with SMA severity. In conclusion, combining the analysis of deletion of NAIP with the assessment of SMN2 copy number increases the value of this tool in predicting the severity of SMA.
    Matched MeSH terms: DNA Mutational Analysis/methods
  18. Heberle LC, Al Tawari AA, Ramadan DG, Ibrahim JK
    Brain Dev, 2006 Jun;28(5):329-31.
    PMID: 16376514
    Ethylmalonic encephalopathy is a rare metabolic disease presenting in infancy with developmental delay, acrocyanosis, petechiae, chronic diarrhea and early death. The biochemical characteristics of this autosomal recessive disease are urinary organic acid abnormalities. Recently it has been found to be caused by mutations in the ETHE1 gene, located on Ch19q13. Only about 30 patients have been reported, and we describe two additional cases. The first patient showed a typical clinical picture and biochemical abnormalities, with additional atypical clinical features. Neuroimaging studies showed extensive changes. A new homozygous mutation in exon 3 of the ETHE1 gene was found. The second patient was not investigated genetically; however besides the typical clinical picture and biochemical profile he was found to have cytochrome C oxidase deficiency.
    Matched MeSH terms: DNA Mutational Analysis
  19. Thirthagiri E, Lee SY, Kang P, Lee DS, Toh GT, Selamat S, et al.
    Breast Cancer Res, 2008;10(4):R59.
    PMID: 18627636 DOI: 10.1186/bcr2118
    The cost of genetic testing and the limited knowledge about the BRCA1 and BRCA2 genes in different ethnic groups has limited its availability in medium- and low-resource countries, including Malaysia. In addition, the applicability of many risk-assessment tools, such as the Manchester Scoring System and BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) which were developed based on mutation rates observed primarily in Caucasian populations using data from multiplex families, and in populations where the rate of breast cancer is higher, has not been widely tested in Asia or in Asians living elsewhere. Here, we report the results of genetic testing for mutations in the BRCA1 or BRCA2 genes in a series of families with breast cancer in the multi-ethnic population (Malay, Chinese and Indian) of Malaysia.
    Matched MeSH terms: DNA Mutational Analysis
  20. Yang XR, Devi BCR, Sung H, Guida J, Mucaki EJ, Xiao Y, et al.
    Breast Cancer Res Treat, 2017 Oct;165(3):687-697.
    PMID: 28664506 DOI: 10.1007/s10549-017-4356-8
    PURPOSE: To characterize the spectrum of germline mutations in BRCA1, BRCA2, and PALB2 in population-based unselected breast cancer cases in an Asian population.

    METHODS: Germline DNA from 467 breast cancer patients in Sarawak General Hospital, Malaysia, where 93% of the breast cancer patients in Sarawak are treated, was sequenced for the entire coding region of BRCA1; BRCA2; PALB2; Exons 6, 7, and 8 of TP53; and Exons 7 and 8 of PTEN. Pathogenic variants included known pathogenic variants in ClinVar, loss of function variants, and variants that disrupt splice site.

    RESULTS: We found 27 pathogenic variants (11 BRCA1, 10 BRCA2, 4 PALB2, and 2 TP53) in 34 patients, which gave a prevalence of germline mutations of 2.8, 3.23, and 0.86% for BRCA1, BRCA2, and PALB2, respectively. Compared to mutation non-carriers, BRCA1 mutation carriers were more likely to have an earlier age at onset, triple-negative subtype, and lower body mass index, whereas BRCA2 mutation carriers were more likely to have a positive family history. Mutation carrier cases had worse survival compared to non-carriers; however, the association was mostly driven by stage and tumor subtype. We also identified 19 variants of unknown significance, and some of them were predicted to alter splicing or transcription factor binding sites.

    CONCLUSION: Our data provide insight into the genetics of breast cancer in this understudied group and suggest the need for modifying genetic testing guidelines for this population with a much younger age at diagnosis and more limited resources compared with Caucasian populations.

    Matched MeSH terms: DNA Mutational Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links