Displaying publications 1 - 20 of 84 in total

Abstract:
Sort:
  1. Cao Z, Liang JB, Liao XD, Wright AD, Wu YB, Yu B
    Animal, 2016 Oct;10(10):1666-76.
    PMID: 27052363 DOI: 10.1017/S1751731116000525
    The primary objective of this study was to investigate the effect of dietary fiber on methanogenic diversity and community composition in the hindgut of indigenous Chinese Lantang gilts to explain the unexpected findings reported earlier that Lantang gilts fed low-fiber diet (LFD) produced more methane than those fed high-fiber diet (HFD). In total, 12 Lantang gilts (58.7±0.37 kg) were randomly divided into two dietary groups (six replicates (pigs) per group) and fed either LFD (NDF=201.46 g/kg) or HFD (NDF=329.70 g/kg). Wheat bran was the main source of fiber for the LFD, whereas ground rice hull (mixture of rice hull and rice bran) was used for the HFD. Results showed that the methanogens in the hindgut of Lantang gilts belonged to four known species (Methanobrevibacter ruminantium, Methanobrevibacter wolinii, Methanosphaera stadtmanae and Methanobrevibacter smithii), with about 89% of the methanogens belonging to the genus Methanobrevibacter. The 16S ribosomal RNA (rRNA) gene copies of Methanobrevibacter were more than three times higher (P0.05) was observed in 16S rRNA gene copies of Fibrobacter succinogenes between the two dietary groups, and 18S rRNA gene copies of anaerobic fungi in gilts fed LFD were lower than (P<0.05) those fed HFD. To better explain the effect of different fiber source on the methanogen community, a follow-up in vitro fermentation using a factorial design comprised of two inocula (prepared from hindgut content of gilts fed two diets differing in their dietary fiber)×four substrates (LFD, HFD, wheat bran, ground rice hull) was conducted. Results of the in vitro fermentation confirmed that the predominant methanogens belonged to the genus of Methanobrevibacter, and about 23% methanogens was found to be distantly related (90%) to Thermogymnomonas acidicola. In vitro fermentation also seems to suggest that fiber source did change the methanogens community. Although the density of Methanobrevibacter species was positively correlated with CH4 production in both in vivo (P<0.01, r=0.737) and in vitro trials (P<0.05, r=0.854), which could partly explain the higher methane production from gilts fed LFD compared with those in the HFD group. Further investigation is needed to explain how the rice hull affected the methanogens and inhibited CH4 emission from gilts fed HFD.
    Matched MeSH terms: Diet/veterinary
  2. Jahromi MF, Liang JB, Ebrahimi R, Soleimani AF, Rezaeizadeh A, Abdullah N, et al.
    Animal, 2017 May;11(5):755-761.
    PMID: 27804905 DOI: 10.1017/S175173111600224X
    To alleviate adverse effects of heavy metal toxicity, diverse range of removing methods have been suggested, that is usage of algae, agricultural by-products and microorganisms. Here, we investigated lead (Pb) biosorption efficacy by two lactic acid bacteria species (LABs) in broiler chickens. In an in vitro study, Pb was added to culture medium of LABs (Lactobacillus pentosus ITA23 and Lactobacillus acidipiscis ITA44) in the form of lead acetate. Results showed that these LABs were able to absorb more than 90% of Pb from the culture medium. In follow-up in vivo study, LABs mixture was added to diet of broiler chickens contained lead acetate (200 mg/kg). Pb exposure significantly increased lipid peroxidation and decreased antioxidant activity in liver. The changes were recovered back to normal level upon LABs supplementation. Moreover, addition of LABs eliminated the liver tissue lesion and the suppressed performance in Pb-exposed chicks. Analysis of liver and serum samples indicated 48% and 28% reduction in Pb accumulation, respectively. In conclusion, results of this study showed that L. pentosus ITA23 and L. acidipiscis ITA44 effectively biosorb and expel dietary Pb from gastrointestinal tract of chickens.
    Matched MeSH terms: Diet/veterinary
  3. Gong YL, Liang JB, Jahromi MF, Wu YB, Wright AG, Liao XD
    Animal, 2018 Feb;12(2):239-245.
    PMID: 28735588 DOI: 10.1017/S1751731117001732
    The objectives of this study were to determine the effect and mode of action of Saccharomyces cerevisiae (YST2) on enteric methane (CH4) mitigation in pigs. A total of 12 Duroc×Landrace×Yorkshire male finisher pigs (60±1 kg), housed individually in open-circuit respiration chambers, were randomly assigned to two dietary groups: a basal diet (control); and a basal diet supplemented with 3 g/YST2 (1.8×1010 live cells/g) per kg diet. At the end of 32-day experiment, pigs were sacrificed and redox potential (Eh), pH, volatile fatty acid concentration, densities of methanogens and acetogens, and expression of methyl coenzyme-M reductase subunit A gene were determined in digesta contents from the cecum, colon and rectum. Results showed that S. cerevisiae YST2 decreased (P<0.05) the average daily enteric CH4 production by 25.3%, lowered the pH value from 6.99 to 6.69 in the rectum, and increased the Eh value in cecum and colon by up to -55 mV (P<0.05). Fermentation patterns were also altered by supplementation of YST2 as reflected by the lower acetate, and higher propionate molar proportion in the cecum and colon (P<0.05), resulting in lower acetate : propionate ratio (P<0.05). Moreover, there was a 61% decrease in Methanobrevibacter species in the upper colon (P<0.05) and a 19% increase in the acetogen community in the cecum (P<0.05) of treated pigs. Results of our study concluded that supplementation of S. cerevisiae YST2 at 3 g/kg substantially decreased enteric CH4 production in pigs.
    Matched MeSH terms: Diet/veterinary
  4. Yusof NNM, Rutherford KMD, Jarvis S, Valente L, Dwyer CM
    Animal, 2023 Nov;17(11):101006.
    PMID: 37897868 DOI: 10.1016/j.animal.2023.101006
    It is common in many countries for sheep to be housed during winter from mid-gestation until lambing to protect ewes and lambs from adverse conditions and improve late gestation nutritional management. Keeping ewes indoors, however, has its own challenges as the animals may be mixed with unfamiliar conspecifics, have limited floor and feeding space, experience changes to their diet and increased handling by humans. Therefore, the objective of this study was to investigate the effect of variation in housing management (space allowance and social stability) on the behaviour and hypothalamic-pituitary-adrenal (HPA) axis responses of pregnant ewes from mid-to-late gestation (weeks 11-18 of pregnancy). Seventy-seven ewes (41 primiparous, 36 multiparous) were divided into two groups: 'Control' and 'Restricted space and mixed' (RS-Mix), where RS-Mix ewes were allocated half the amount of space (1.27 vs 2.5 m2 for RS-Mix and Control, respectively) and feedface (concentrate feeder space) allowance (36 vs 71 cm per ewe) given to the Control group and were also subjected to two social mixing events. Aggressive behaviour at the feedface and time spent standing, lying, walking, feeding and ruminating were recorded and faecal samples were collected for assessment of faecal glucocorticoid metabolite (FGM) concentrations. Higher aggression was observed in RS-Mix ewes during the first week of observation (P = 0.044), which gradually declined to the same level as Control ewes by the end of the study (P = 0.045). RS-Mix ewes were significantly less likely to be able to freely join the feedface compared to Controls (P = 0.022). No other significant treatment effects on aggressive behaviour or FGM during gestation were found. RS-Mix ewes displayed significantly higher ruminating behaviour at week 18 of gestation compared to Control ewes (P 
    Matched MeSH terms: Diet/veterinary
  5. Adeyemi KD, Sabow AB, Abubakar A, Samsudin AA, Sazili AQ
    Anim Sci J, 2016 Nov;87(11):1421-1432.
    PMID: 26987458 DOI: 10.1111/asj.12597
    This study examined the effects of dietary blend of 80% canola oil and 20% palm oil (BCPO) on the physicochemical properties, antioxidant status, oxidative stability and fatty acid composition of Longissimus thoracis et lumborum (LTL) muscle from goats during chill storage. Over a 14-week feeding trial, 24 Boer bucks were randomly assigned to and supplemented with diets containing 0, 4 or 8% BCPO on a dry matter basis, slaughtered and the LTL was subjected to a 7 day chill storage. Neither diet nor post mortem ageing influenced (P > 0.05) antioxidant enzyme activities, chemical composition and cholesterol. Diet had no effect on the carbonyl content, free thiol content, water-holding capacity, tenderness, pH and glycogen. Oil-supplemented goats had higher (P  0.05) changes were found in the proportion of individual fatty acids throughout storage. Total polyunsaturated fatty acids (PUFA) decreased while total saturated fatty acids increased as storage progressed. Dietary BCPO enhanced n-3 PUFA without compromising the quality attributes of chevon.
    Matched MeSH terms: Diet/veterinary*
  6. Adeyemi KD, Sazili AQ, Ebrahimi M, Samsudin AA, Alimon AR, Karim R, et al.
    Anim Sci J, 2016 Sep;87(9):1137-47.
    PMID: 26582150 DOI: 10.1111/asj.12549
    The study examined the effects of blend of 80% canola oil and 20% palm oil (BCPO) on nutrient intake and digestibility, growth performance, rumen fermentation and fatty acids (FA) in goats. Twenty-four Boer bucks were randomly assigned to diets containing 0, 4 and 8% BCPO on a dry matter basis, fed for 100 days and slaughtered. Diet did not affect feed efficiency, growth performance, intake and digestibility of all nutrients except ether extract. Intakes and digestibilities of ether extract, unsaturated fatty acids (FA) and total FA were higher (P diets. Ruminal concentration of C18:0, n-3 FA and total FA increased (P 
    Matched MeSH terms: Diet/veterinary*
  7. Cheng PH, Liang JB, Wu YB, Wang Y, Tufarelli V, Laudadio V, et al.
    Anim Sci J, 2017 Aug;88(8):1141-1148.
    PMID: 28026141 DOI: 10.1111/asj.12723
    Native Lantang and commercial Duroc pigs were used as animal models to evaluate the differences existing in dietary fiber utilization ability between breeds. Animals were fed the same diet from weaning (4 weeks) to 4 months of age. Neutral detergent fiber (NDF) from wheat bran (as substrate) and fecal samples from the two breeds (as inoculum) were used in an in vitro gas production trial. Results showed that cumulative and maximum gas productions were higher in inocula from Lantang than those from the Duroc breed (P 
    Matched MeSH terms: Diet/veterinary*
  8. Jafari S, Goh YM, Rajion MA, Jahromi MF, Ahmad YH, Ebrahimi M
    Anim Sci J, 2017 Feb;88(2):267-276.
    PMID: 27345820 DOI: 10.1111/asj.12634
    Papaya leaf methanolic extract (PLE) at concentrations of 0 (CON), 5 (LLE), 10 (MLE) and 15 (HLE) mg/250 mg dry matter (DM) with 30 mL buffered rumen fluid were incubated for 24 h to identify its effect on in vitro ruminal methanogenesis and ruminal biohydrogenation (BH). Total gas production was not affected (P > 0.05) by addition of PLE compared to the CON at 24 h of incubation. Methane (CH4 ) production (mL/250 mg DM) decreased (P diet with PLE significantly (P <0.05) decreased the rate of BH of C18:1n-9 (oleic acid; OA), C18:2n-6 (linoleic acid; LA), C18:3n-3 (linolenic acid; LNA) and C18 polyunsaturated fatty acids (PUFA) compared to CON after 24 h incubation, which resulted in higher concentrations of BH intermediates such as C18:1 t11 (vaccenic acid; VA), c9t11 conjugated LA (CLA) (rumenic acid; RA) and t10c12 CLA. Real-time PCR analysis indicated that the total bacteria, total protozoa, Butyrivibrio fibrisolvens and methanogen population in HLE decreased (P <0.05) compared to CON, but the total bacteria and B. fibrisolvens population were higher (P 
    Matched MeSH terms: Diet/veterinary*
  9. Khatun J, Loh TC, Akit H, Foo HL, Mohamad R
    Anim Sci J, 2017 Sep;88(9):1406-1413.
    PMID: 28220633 DOI: 10.1111/asj.12775
    The present study assessed the effect of feeding palm oil (PO), sunflower oil (SO) and their combination on performance, fat deposition, fatty acid composition and lipogenic gene expression of broilers reared for 42 days. A total of 144 1-day-old broilers (Cobb500) were randomly allotted into four treatment diets with each having six replicates of six chicks in each replicate following a completely randomized design. Live weight gain and feed efficiency was significantly (P diet supplemented with SO and the combination of SO and PO down-regulated gene expression of key hepatic lipogenic enzymes of fatty acids synthase (FAS), acetyl-CoA carboxylase (ACC) and stearoyl-CoA desaturase (SCD). These findings suggest that the diet containing the combination of 2% PO and 4% SO may reduce hepatic lipogenesis, as well as lower abdominal fat content of broilers.
    Matched MeSH terms: Diet/veterinary*
  10. Rahman MM, Mat K, Ishigaki G, Akashi R
    Anim Sci J, 2021 Dec;92(1):e13594.
    PMID: 34289204 DOI: 10.1111/asj.13594
    Year by year, huge quantities of by-products are generated during the manufacturing process of soybean-based products. Okara is one of the by-products, and it is an insoluble portion of the soybean. It consists of high moisture (8.4-22.9%); on dry matter basis, it contains high metabolizable energy (9.0-14.2 MJ/kg) and other components that include crude protein (20.9-39.1%), crude fiber (12.2-61.3%), crude fat (4.9-21.5%), and ash (3.4-5.3%). Fermentation of okara improves its nutritional quality and reduces its anti-nutrient contents. Due to animals' palatability, okara can be used to replace the soybean meal/concentrate feed partially or completely in ruminant's diet and partially in nonruminant's diet. Okara feeding does not depress the intake, digestibility, growth, milk production, blood metabolic profiles, and meat quality of animals. However, this by-product decays quickly due to its high moisture content, and its heavy weight and sticky nature make it difficult to process and expensive to dry using conventional methods. This paper thoroughly summarizes the utilization of okara as animal feed in the cause of developing a general guideline with favorable levels of inclusion in the diets of animals for its exploitation and valorization. This review will encourage further research to develop eco-friendly and value added feed for animals.
    Matched MeSH terms: Diet/veterinary
  11. Abdul Razak S, Scribner KT
    Appl Environ Microbiol, 2020 05 05;86(10).
    PMID: 32169941 DOI: 10.1128/AEM.02662-19
    Gastrointestinal (GI) or gut microbiotas play essential roles in host development and physiology. These roles are influenced partly by the microbial community composition. During early developmental stages, the ecological processes underlying the assembly and successional changes in host GI community composition are influenced by numerous factors, including dispersal from the surrounding environment, age-dependent changes in the gut environment, and changes in dietary regimes. However, the relative importance of these factors to the gut microbiota is not well understood. We examined the effects of environmental (diet and water sources) and host early ontogenetic development on the diversity of and the compositional changes in the gut microbiota of a primitive teleost fish, the lake sturgeon (Acipenser fulvescens), based on massively parallel sequencing of the 16S rRNA gene. Fish larvae were raised in environments that differed in water source (stream versus filtered groundwater) and diet (supplemented versus nonsupplemented Artemia fish). We quantified the gut microbial community structure at three stages (prefeeding and 1 and 2 weeks after exogenous feeding began). The diversity declined and the community composition differed significantly among stages; however, only modest differences associated with dietary or water source treatments were documented. Many taxa present in the gut were over- or underrepresented relative to neutral expectations in each sampling period. The findings indicate dynamic relationships between the gut microbiota composition and host gastrointestinal physiology, with comparatively smaller influences being associated with the rearing environments. Neutral models of community assembly could not be rejected, but selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for sturgeon conservation and aquaculture production specifically and applications of microbe-based management in teleost fish generally.IMPORTANCE We quantified the effects of environment (diet and water sources) and host early ontogenetic development on the diversity of and compositional changes in gut microbial communities based on massively parallel sequencing of the 16S rRNA genes from the GI tracts of larval lake sturgeon (Acipenser fulvescens). The gut microbial community diversity declined and the community composition differed significantly among ontogenetic stages; however, only modest differences associated with dietary or water source treatments were documented. Selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for lake sturgeon and early larval ecology and survival in their natural habitat and for conservation and aquaculture production specifically, as well as applications of microbe-based management in teleost fish generally.
    Matched MeSH terms: Diet/veterinary
  12. Rovie-Ryan JJ, Zainuddin ZZ, Marni W, Ahmad AH, Ambu LN, Payne J
    Asian Pac J Trop Biomed, 2013 Feb;3(2):95-9.
    PMID: 23593586 DOI: 10.1016/S2221-1691(13)60031-3
    To demonstrate a noninvasive large mammalian genetic sampling method using blood meal obtained from a tabanid fly.
    Matched MeSH terms: Diet/veterinary
  13. Loh TC, Choe DW, Foo HL, Sazili AQ, Bejo MH
    BMC Vet Res, 2014;10:149.
    PMID: 24996258 DOI: 10.1186/1746-6148-10-149
    Probiotics are beneficial bacteria that are able to colonize the host digestive system, increasing the natural flora and preventing colonization of pathogenic organisms and thus, securing optimal utility of the feed. However, commercial probiotic often do not meet the expected standards and the viability of the efficacy of these strains remains questionable. Another major issue has been highlighted in relation to the application of antibiotic resistant probiotics, the antibiotic resistant gene can be transferred between organisms. Recently, postbiotic metabolites produced from microbes have been extensively studied as feed additive in order to substitute in-feed antibiotics.
    Matched MeSH terms: Diet/veterinary
  14. Izuddin WI, Loh TC, Samsudin AA, Foo HL, Humam AM, Shazali N
    BMC Vet Res, 2019 Sep 02;15(1):315.
    PMID: 31477098 DOI: 10.1186/s12917-019-2064-9
    BACKGROUND: Postbiotics have been established as potential feed additive to be used in monogastric such as poultry and swine to enhance health and growth performance. However, information on the postbiotics as feed additive in ruminants is very limited. The aim of this study was to elucidate the effects of supplementation of postbiotics in newly-weaned lambs on growth performance, digestibility, rumen fermentation characteristics and microbial population, blood metabolite and expression of genes related to growth and volatile fatty acid transport across the rumen epithelium.

    RESULTS: Postbiotic supplementation increased weight gain, feed intake, nutrient intake and nutrient digestibility of the lambs. No effect on ruminal pH and total VFA, whereas butyrate and ruminal ammonia-N concentration were improved. The lambs fed with postbiotics had higher blood total protein, urea nitrogen and glucose. However, no difference was observed in blood triglycerides and cholesterol levels. Postbiotics increased the population of fibre degrading bacteria but decreased total protozoa and methanogens in rumen. Postbiotics increased the mRNA expression of hepatic IGF-1 and ruminal MCT-1.

    CONCLUSIONS: The inclusion of postbiotics from L. plantarum RG14 in newly-weaned lambs improved growth performance, nutrient intake and nutrient digestibility reflected from better rumen fermentation and microbial parameters, blood metabolites and upregulation of growth and nutrient intake genes in the post-weaning lambs.

    Matched MeSH terms: Diet/veterinary
  15. Dalia AM, Loh TC, Sazili AQ, Samsudin AA
    BMC Vet Res, 2020 Sep 29;16(1):365.
    PMID: 32993790 DOI: 10.1186/s12917-020-02587-x
    BACKGROUND: Several studies indicated that dietary organic selenium (Se) usually absorbed better than an inorganic source, with high retention and bioavailability. Dietary Se as an antioxidant element affects the immune system and hematological status in animals. Therefore, the aim of this study was to evaluate the effect of dietary supplementation of bacterial selenium as an organic source on hematology, immunity response, selenium retention, and gut morphology in broiler chickens.

    RESULTS: The present results revealed that supplementation of inorganic Se was associated with the lowest level of RBC, HB, and PCV with significant difference than ADS18-Se. In the starter stage, both T2 and T5 were associated with the significantly highest IgG level compared to the basal diet, while all supplemented groups showed higher IgM levels compared to the control group. In the finisher phase, all Se supplemented groups showed significant (P ˂ 0.05) increases in IgG, IgA, and IgM levels compared to T1. Birds fed bacterial-Se showed high intestinal villus height and better Se retention more than sodium selenite. The organic selenium of ADS18 had a superior action in improving Se retention compared to ADS1 and ADS2 bacterial Se.

    CONCLUSIONS: Bacterial organic Se had a beneficial effect on the villus height of small intestine led to high Se absorption and retention. Thus, it caused a better effect of Se on hematological parameters and immunity response.

    Matched MeSH terms: Diet/veterinary*
  16. Dalia AM, Loh TC, Sazili AQ, Jahromi MF, Samsudin AA
    BMC Vet Res, 2018 Aug 24;14(1):249.
    PMID: 30143038 DOI: 10.1186/s12917-018-1578-x
    BACKGROUND: Selenium (Se) and vitamin E (Vit E) can act synergistically and affect biological processes, mainly antioxidant and immunity. The use of excess dietary Vit E and Se in animals' feed could enhance immune response and induce disease resistance. Moreover, different Se sources may provide different alterations in the immune system. Accordingly, the aim of the current study was to assess the impact of dietary supplementation of Vit E, inorganic Se (sodium selenite, SS), bacterial organic Se of ADS18, and their different combinations on the plasma immunoglobulins, ceacum microbial population, and splenic cytokines gene expression in broiler chickens.

    RESULTS: Present results showed that, Se and Vit E synergistic effect was clear in plasma IgM level at day 42 and in splenic cytokines expression (TNF-α, IFN-γ, IL-2, IL-10). The combination of 0.3 mg/kg ADS18-Se with 100 mg/kg Vit E showed the highest IgM level compared to Vit E- SS complex. The combination of either SS or ADS18-Se with Vit E had no significant effect on IFN- γ and IL-10 compared to Vit E alone, while Vit E alone showed the significantly lowest TNF-α compared to the Se combinations. Supplementation of 100 mg/kg Vit E had no effect on microbial population except a slight reduction in Salmonella spp. The main effect of Se sources was that both sources increased the day 42 IgA and IgG level compared to NS group. ADS18-Se modulate the caecum microbial population via enhancing beneficial bacteria and suppressing the E-coli and Salmonella spp. while both Se and Vit E factors had no effect on lymphoid organ weights.

    CONCLUSIONS: The inclusion of 100 mg/kg Vit E with 0.3 mg/kg ADS18-Se, effectively could support the immune system through regulation of some cytokines expression and immunoglobulin levels more than using ADS18-Se alone, while no difference was observed between using SS alone or combined with Vit E.

    Matched MeSH terms: Diet/veterinary
  17. Muhammad AI, Dalia AM, Loh TC, Akit H, Samsudin AA
    BMC Vet Res, 2021 Aug 21;17(1):281.
    PMID: 34419016 DOI: 10.1186/s12917-021-02964-0
    BACKGROUND: The oviduct of a hen provides a conducive environment for egg formation, which needs a large amount of mineral elements from the blood via trans-epithelial permeability. Eggshell is the calcified layer on the outside of an egg that provides protection and is critical for egg quality. However, little is known about the genes or proteins involved in eggshell formation, and their relationship to dietary microminerals. We hypothesized that dietary selenium supplementation in chickens will influence genes involved in eggshell biomineralization, and improve laying hen antioxidant capacity. The objective of this research was to investigate how organic and inorganic dietary selenium supplementation affected mRNA expression of shell gland genes involved in eggshell biomineralization, and selenoproteins gene expression in Lohman Brown-Classic laying hens.

    RESULTS: Shell gland (Uterus) and liver tissue samples were collected from hens during the active growth phase of calcification (15-20 h post-ovulation) for RT-PCR analysis. In the oviduct (shell gland and magnum) and liver of laying hens, the relative expression of functional eggshell and hepatic selenoproteins genes was investigated. Results of qPCR confirmed the higher (p diet treatments. Similarly, dietary Se treatments affected the mRNA expression of OCX-32 and OCX-36 in the shell gland of laying hens. In the magnum, mRNA expression of OC-17 was significantly (p 

    Matched MeSH terms: Diet/veterinary*
  18. Tang SGH, Sieo CC, Ramasamy K, Saad WZ, Wong HK, Ho YW
    BMC Vet Res, 2017 Aug 17;13(1):248.
    PMID: 28814309 DOI: 10.1186/s12917-017-1160-y
    BACKGROUND: The increasing trend of ban on the use of antibiotic growth promoters (AGPs) across the globe in the poultry industry has led to a growing need for alternatives to AGPs. Prebiotic, probiotic and their combination as a synbiotic have been considered as potential alternatives. This study aimed to investigate the effects of a prebiotic (isomaltooligosaccharide, IMO), a probiotic (PrimaLac®), and their combination (synbiotic) on hen performance, biochemical and haematological responses, and relative organ weights from 20 to 52 weeks of age.

    RESULTS: Supplementation of 1% IMO (PRE), 0.1% PrimaLac® (PRO) and 1% IMO + 0.1% PrimaLac® (SYN) improved (P 

    Matched MeSH terms: Diet/veterinary*
  19. Dalia AM, Loh TC, Sazili AQ, Jahromi MF, Samsudin AA
    BMC Vet Res, 2017 Aug 18;13(1):254.
    PMID: 28821244 DOI: 10.1186/s12917-017-1159-4
    BACKGROUND: Selenium (Se) is an essential trace mineral in broilers, which has several important roles in biological processes. Organic forms of Se are more efficient than inorganic forms and can be produced biologically via Se microbial reduction. Hence, the possibility of using Se-enriched bacteria as feed supplement may provide an interesting source of organic Se, and benefit broiler antioxidant system and other biological processes. The objective of this study was to examine the impacts of inorganic Se and different bacterial organic Se sources on the performance, serum and tissues Se status, antioxidant capacity, and liver mRNA expression of selenoproteins in broilers.

    RESULTS: Results indicated that different Se sources did not significantly (P ≤ 0.05) affect broiler growth performance. However, bacterial organic Se of T5 (basal diet +0.3 mg /kg feed ADS18 Se), T4 (basal diet +0.3 mg /kg feed ADS2 Se), and T3 (basal diet +0.3 mg /kg feed ADS1 Se) exhibited significantly (P ≤ 0.05) highest Se concentration in serum, liver, and kidney respectively. Dietary inorganic Se and bacterial organic Se were observed to significantly affect broiler serum ALT, AST, LDH activities and serum creatinine level. ADS18 supplemented Se of (Stenotrophomonas maltophilia) bacterial strain showed the highest GSH-Px activity with the lowest MDA content in serum, and the highest GSH-Px and catalase activity in the kidney, while bacterial Se of ADS2 (Klebsiella pneumoniae) resulted in a higher level of GSH-Px1 and catalase in liver. Moreover, our study showed that in comparison with sodium selenite, only ADS18 bacterial Se showed a significantly higher mRNA level in GSH-Px1, GSH-Px4, DIO1, and TXNDR1, while both ADS18 and ADS2 showed high level of mRNA of DIO2 compared to sodium selenite.

    CONCLUSIONS: The supplementation of bacterial organic Se in broiler chicken, improved tissue Se deposition, antioxidant status, and selenoproteins gene expression, and can be considered as an effective alternative source of Se in broiler chickens.

    Matched MeSH terms: Diet/veterinary
  20. Nur Atikah I, Alimon AR, Yaakub H, Abdullah N, Jahromi MF, Ivan M, et al.
    BMC Vet Res, 2018 Nov 14;14(1):344.
    PMID: 30558590 DOI: 10.1186/s12917-018-1672-0
    BACKGROUND: The effects of the dietary oils with differing fatty acid profiles on rumen fermentation, microbial population, and digestibility in goats were investigated. In Experiment I, rumen microbial population and fermentation profiles were evaluated on 16 fistulated male goats that were randomly assigned to four treatment groups: i) control (CNT), ii) olive oil (OL), iii) palm olein oil (PO), and iv) sunflower oil (SF). In Experiment II, another group of 16 male goats was randomly assigned to the same dietary treatments for digestibility determination.

    RESULTS: Rumen ammonia concentration was higher in CNT group compared to treatment groups receiving dietary oils. The total VFA and acetate concentration were higher in SF and OL groups, which showed that they were significantly affected by the dietary treatments. There were no differences in total microbial population. However, fibre degrading bacteria populations were affected by the interaction between treatment and day of sampling. Significant differences were observed in apparent digestibility of crude protein and ether extract of treatment groups containing dietary oils compared to the control group.

    CONCLUSIONS: This study demonstrated that supplementation of different dietary oils containing different fatty acid profiles improved rumen fermentation by reducing ammonia concentration and increasing total VFA concentration, altering fibre degrading bacteria population, and improving apparent digestibility of crude protein and ether extract.

    Matched MeSH terms: Diet/veterinary*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links