The present study investigated the genetic profile of the cosmopolitan cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae) from Malaysia and the reference data available in the National Center for Biotechnology Information (NCBI) GenBank. A set of sequences of 100 Malaysian samples aligned as 550 characters of the cytochrome c oxidase subunit I (cox1) and 706 characters of the II (cox2) genes revealed ten haplotypes (A1-A10) and eight haplotypes (B1-B8), respectively. The concatenated sequences of cox1 and cox2 genes with a total of 1256 characters revealed 15 haplotypes (AB1-AB15). Analyses indicated that haplotype AB1 was the most frequent and the most widespread haplotype in Malaysia. Overall haplotype and nucleotide diversities of the concatenated sequences were 0.52909 and 0.00424, respectively, with moderate genetic differentiation (FST = 0.17522) and high gene flow (Nm = 1.18). The western population presented the highest genetic diversity (Hd = 0.78333, Pi = 0.01269, Nh = 9), whereas the southern population demonstrated the lowest diversity (Hd = 0.15667, Pi = 0.00019, Nh = 3). The concatenated sequences showed genetic distances ranged from 0.08 % to 4.39 %. There were three aberrant haplotypes in cox2 sequences that highly divergent, suggesting the presence of cryptic species or occurrence of introgression. In the global point of view, the aligned sequences of C. felis revealed 65 haplotypes (AA1-AA65) by the cox1 gene (n = 586), and 27 haplotypes (BB1-BB27) by the cox2 gene (n = 204). Mapping of the haplotype network showed that Malaysian C. felis possesses seven unique haplotypes in both genes with the common haplotypes demonstrated genetic affinity with C. felis from Southeast Asia for cox1 and South America for cox2. The topologies of cox1 and cox2 phylogenetic trees were concordant with relevant grouping pattern of haplotypes in the network but revealed two major lineages by which Malaysian haplotypes were closely related with haplotypes from the tropical region.
Bactrocera latifrons is a serious pest of solanaceous fruits and Bactrocera umbrosa is a pest of Artocarpus fruits, while Bactrocera melastomatos infests the fruit of Melastomataceae. They are members of the subgenus Bactrocera. We report here the complete mitochondrial genome of these fruit flies determined by next-generation sequencing and their phylogeny with other taxa of the subgenus Bactrocera. The whole mitogenomes of these three species possessed 37 genes namely, 13 protein-coding genes (PCGs), 2 rRNA and 22 tRNA genes. The mitogenome of B. latifrons (15,977 bp) was longer than those of B. melastomatos (15,954 bp) and B. umbrosa (15,898 bp). This difference can be attributed to the size of the intergenic spacers (283 bp in B. latifrons, 261 bp in B. melastomatos, and 211 bp in B. umbrosa). Most of the PCGs in the three species have an identical start codon, except for atp8 (adenosine triphosphate synthase protein 8), which had an ATG instead of GTG in B. umbrosa, whilst the nad3 (NADH dehydrogenase subunit 3) and nad6 (NADH dehydrogenase subunit 6) genes were characterized by an ATC instead of ATT in B. melastomatos. The three species had identical stop codon for the respective PCGs. In B. latifrons and B. melastomatos, the TΨC (thymidine-pseudouridine-cytidine)-loop was absent in trnF (phenylalanine) and DHU (dihydrouracil)-loop was absent in trnS1 (serine S1). In B. umbrosa, trnN (asparagine), trnC (cysteine) and trnF lacked the TψC-loop, while trnS1 lacked the DHU-stem. Molecular phylogeny based on 13 PCGs was in general concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes), with B. latifrons and B. umbrosa forming a sister group basal to the other species of the subgenus Bactrocera which was monophyletic. The whole mitogenomes will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general.
The Old World screwworm fly (OWS), Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), is a myiasis-causing blowfly of major concern for both animals and humans. Surveillance traps are used in several countries for early detection of incursions and to monitor control strategies. Examination of surveillance trap catches is time-consuming and is complicated by the presence of morphologically similar flies that are difficult to differentiate from Ch. bezziana, especially when the condition of specimens is poor. A molecular-based method to confirm or refute the presence of Ch. bezziana in trap catches would greatly simplify monitoring programmes. A species-specific real-time polymerase chain reaction (PCR) assay was designed to target the ribosomal DNA internal transcribed spacer 1 (rDNA ITS1) of Ch. bezziana. The assay uses both species-specific primers and an OWS-specific Taqman((R)) MGB probe. Specificity was confirmed against morphologically similar and related Chrysomya and Cochliomyia species. An optimal extraction protocol was developed to process trap catches of up to 1000 flies and the assay is sensitive enough to detect one Ch. bezziana in a sample of 1000 non-target species. Blind testing of 29 trap catches from Australia and Malaysia detected Ch. bezziana with 100% accuracy. The probability of detecting OWS in a trap catch of 50 000 flies when the OWS population prevalence is low (one in 1000 flies) is 63.6% for one extraction. For three extractions (3000 flies), the probability of detection increases to 95.5%. The real-time PCR assay, used in conjunction with morphology, will greatly increase screening capabilities in surveillance areas where OWS prevalence is low.
Knowledge on the population of genetic structure and ecological behaviour of Apis dorsata from Peninsular Malaysia is needed for effective management and conservation of this species since unsustainable whole solitary low nest cutting for product harvesting is the current common practice here. The analysis of 15 single locus DNA microsatellite markers on samples from 20 solitary nests of A. dorsata showed that while these markers were polymorphic, high intracolonial relatedness existed. Furthermore, in general, slightly negative values of intercolony relatedness (R) among the nests of A. dorsata were found. However, positive values of mean intercolony relatedness were observed between 54 pairs of nests out of 190 possible combinations. The R values among nest pairs 3-4 and 3-5 was higher than 0.50 showing that their queens were half siblings, whereas nest pair 19-20 showed relatedness of 0.95 indicating that the same queen was sampled. The results that we obtained could not conclusively support the hypothesis of this study that the honey hunters in Marang district of Malaysia repeatedly harvest the same nest located at a different site and at a different time during the same honey harvesting season. However, our finding of an appreciable level of intercolonial relatedness between several pairs of nests in this pioneer study indicated that a comprehensive study with a larger sample size of solitary nests found throughout the region would be necessary to provide concrete proof for this novel idea.
Perspicuous assessments of taxonomic boundaries and discovery of cryptic taxa are of paramount importance in interpreting ecological and evolutionary phenomena among black flies (Simuliidae) and combating associated vector-borne diseases. Simulium tani Takaoka & Davies is the largest and perhaps the most taxonomically challenging species complex of black flies in the Oriental Region. We use a DNA sequence-based method to delineate currently recognized chromosomal and morphological taxa in the S. tani complex on the Southeast Asian mainland and Taiwan, while elucidating their phylogenetic relationships. A molecular approach using multiple genes, coupled with morphological and chromosomal data, supported recognition of cytoform K and morphoform 'b' as valid species; indicated that S. xuandei, cytoform L, and morphoform 'a' contain possible cryptic species; and suggested that cytoform B is in the early stages of reproductive isolation whereas lineage sorting is incomplete in cytoforms A, C, and G.
Houseflies (Musca domestica L., Diptera: Muscidae) are cosmopolitan, colonizing, and eusynanthropic. Their distribution in the Malaysian archipelago provides an opportunity to study successive waves of colonization and extinction during the Pleistocene and Recent epochs. We scored single-strand conformation polymorphisms (SSCPs) at 16S2 and COII mitochondrial loci in 47 housefly samples from the Australian, Austro-Malayan, Indo-Malayan, Manchurian and Indo-Chinese subregions of Wallace's zoogeographical classification. We discuss the results in light of the Pleistocene vs. post-Pleistocene dispersal and faunal exchange in the Asia-Pacific area. Fourteen haplotypes were detected, of which 10 were confined to a single subregion. No haplotype was ubiquitous and only one was found in four subregions. Population diversity, HS, was greatest in the Indo-Malayan (0.36) and heterogeneous among subregions. The mean subregional diversity was 0.21 +/- 0.03, representing the probability that two randomly chosen flies, from any subregion, had different haplotypes. The hierarchical partition of diversity indicated restricted maternal gene flow among subregions (GRT = 0.60, Nm approximately 0.32). These results suggest long-standing genetic isolation of houseflies in the Malaysian archipelago and support the hypothesis that they dispersed widely during the Pleistocene. Haplotypes common among mainland populations but shared with island groups in low frequencies (<1%) indicate surprisingly little recent gene flow.
Drosophila bipectinata from Iriomote-jima (IR) is susceptible to the endoparasitoid Leptopilina victoriae from Kota Kinabalu (L. victoriae KK), but D. bipectinata from Kota Kinabalu (KK) and Bogor (BG) is resistant. The cross experiments between the resistant (KK) and susceptible (IR) populations of D. bipectinata suggested that the resistance to this parasitoid is a dominant trait and controlled by a single locus or few linked loci on an autosome. In the AFLP analysis using the IR, KK and BG populations of D. bipectinata and the resistant and susceptible populations derived from a mixed population of these three geographic populations, a DNA fragment almost specific to susceptible flies was detected. It also revealed that genes from the IR population were more frequently maintained in the mixed population compared with those from the KK and BG populations, suggesting that at least a number of genes from the IR population are more advantageous under the laboratory conditions. This explains our previous results that the resistance was lowered in the mixed population although the resistance itself is suggested to incur only low costs; i.e., the resistance gene(s) from the KK and BG populations would have been linked with some genes that are disadvantageous under the laboratory conditions.
Most female black flies in the genus Simulium are blood-sucking flies and they can cause various parasitic diseases in human and animal. A total of 94 species of black flies have been reported in Malaysia, however, their biting behavior and role as vector of infectious agents remain understudied. To fill in this knowledge gap, we attempted to survey adult black flies from field populations in Peninsular Malaysia. In a survey carried out in 2017 at Tasik Kenyir, Terengganu, three females were caught while attracted and landed on human skin. Further morphological and molecular analyses showed that the specimens were identical to Simulium (Gomphostilbia) aziruni Takaoka, Hashim & Chen of the Simulium gombakense species-group. This is the first report on a black fly species attracted to human in Malaysia which serves as a steppingstone towards in-depth studies for black flies in this region.
Pieris rapae is a serious pest of brassicas worldwide. We performed de novo assembly of P. rapae transcriptome by next-generation sequencing and assembled approximately 65,727,422 clean paired-end reads into 32,118 unigenes, of which 13,585 were mapped to 255 pathways in the KEGG database. A total of 6173 novel transcripts were identified from reads directly mapped to P. rapae genome. Additionally, 1490 SSRs, 301,377 SNPs, and 29,284 InDels were identified as potential molecular markers to explore polymorphism within P. rapae populations. We screened and mapped 36 transcripts related to OBP, CSP, SNMP, PBAN, and OR. We analyzed the expression profiles of 7 selected genes involved in pheromone transport and degradation by quantitative real-time PCR; these genes are sex-specific and differentially expressed in the developmental stages. Overall, the comprehensive transcriptome resources described in this study could help understand and identify molecular targets particularly reproduction-related genes for developing effective P. rapae management tools.
Simulium (Simulium) phraense sp. nov. (Diptera: Simuliidae) is described from females, males, pupae, and larvae from Thailand. This new species is placed in the Simulium striatum species group and is most similar to Simulium (Simulium) nakhonense Takaoka & Suzuki (Diptera: Simuliidae) from Thailand among species of the same species group but is barely distinguished from the latter species by lacking annular ridges on the surface of the pupal gill filaments. The fast-evolving nuclear big zinc finger (BZF) gene has successfully differentiated this new species from its allies, S. (S.) nakhonense and Simulium (Simulium) chiangmaiense Takaoka & Suzuki (Diptera: Simuliidae) of the S. striatum species group. The BZF gene sequences show that this new species is more closely related to S. (S.) nakhonense than to S. (S.) chiangmaiense, further supporting its morphological classification.
The mitochondiral DNA region encompassing the cytochrome oxidase subunit I (COI) and cytochrome oxidase subunit II (COII) genes of two Malaysian blow fly species, Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart) were studied. This region, which spans 2303bp and includes the COI, tRNA leucine and partial COII was sequenced from adult fly and larval specimens, and compared. Intraspecific variations were observed at 0.26% for Ch. megacephala and 0.17% for Ch. rufifacies, while sequence divergence between the two species was recorded at a minimum of 141 out of 2303 sites (6.12%). Results obtained in this study are comparable to published data, and thus support the use of DNA sequence to facilitate and complement morphology-based species identification.
Sandflies vary in their distributions and role in pathogen transmission. Attempts to record distributions of sandflies in Thailand have faced difficulties due to their high abundance and diversity. We aim to provide an insight into the diversity of sandflies in Thailand by (i) conducting a literature review, and (ii) DNA barcoding sandflies collected from Wihan Cave where eight morphologically characterized species were recorded. DNA barcodes generated for 193 sandflies fell into 13 distinct species clusters under four genera (Chinius, Idiophlebotomus, Phlebotomus and Sergentomyia). Five of these species could be assigned Linnaean species names unambiguously and two others corresponded to characterized morphospecies. Two species represented a complex under the name Sergentomyia barraudi while the remaining four had not been recognized before in any form. The resulting species checklist and DNA barcode library contribute to a growing set of records for sandflies which is useful for monitoring and vector control.
The ability to cope with infection by a parasite is one of the major challenges for any host species and is a major driver of evolution. Parasite pressure differs between habitats. It is thought to be higher in tropical regions compared to temporal ones. We infected Drosophila melanogaster from two tropical (Malaysia and Zimbabwe) and two temperate populations (the Netherlands and North Carolina) with the generalist entomopathogenic fungus Beauveria bassiana to examine if adaptation to local parasite pressures led to differences in resistance. Contrary to previous findings we observed increased survival in temperate populations. This, however, is not due to increased resistance to infection per se, but rather the consequence of a higher general vigor of the temperate populations. We also assessed transcriptional response to infection within these flies eight and 24 hours after infection. Only few genes were induced at the earlier time point, most of which are involved in detoxification. In contrast, we identified more than 4,000 genes that changed their expression state after 24 hours. This response was generally conserved over all populations with only few genes being uniquely regulated in the temperate populations. We furthermore found that the American population was transcriptionally highly diverged from all other populations concerning basal levels of gene expression. This was particularly true for stress and immune response genes, which might be the genetic basis for their elevated vigor.
In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA "superbarcodes" for testing hypotheses regarding global patterns of diversity.
The mosquito Aedes aegypti (Ae. aegypti) is the most notorious vector of illness-causing viruses such as Dengue, Chikugunya, and Zika. Although numerous genetic expression studies utilizing quantitative real-time PCR (qPCR) have been conducted with regards to Ae. aegypti, a panel of genes to be used suitably as references for the purpose of expression-level normalization within this epidemiologically important insect is presently lacking. Here, the usability of seven widely-utilized reference genes i.e. actin (ACT), eukaryotic elongation factor 1 alpha (eEF1α), alpha tubulin (α-tubulin), ribosomal proteins L8, L32 and S17 (RPL8, RPL32 and RPS17), and glyceraldeyde 3-phosphate dehydrogenase (GAPDH) were investigated. Expression patterns of the reference genes were observed in sixteen pre-determined developmental stages and in cell culture. Gene stability was inferred from qPCR data through three freely available algorithms i.e. BestKeeper, geNorm, and NormFinder. The consensus rankings generated from stability values provided by these programs suggest a combination of at least two genes for normalization. ACT and RPS17 are the most dependably expressed reference genes and therefore, we propose an ACT/RPS17 combination for normalization in all Ae. aegypti derived samples. GAPDH performed least desirably, and is thus not a recommended reference gene. This study emphasizes the importance of validating reference genes in Ae. aegypti for qPCR based research.
Members of the Aedes genus of mosquitoes are widely recognized as vectors of viral diseases. Ae.albopictus is its most invasive species, and are known to carry viruses such as Dengue, Chikugunya and Zika. Its emerging importance puts Ae.albopictus on the forefront of genetic interaction and evolution studies. However, a panel of suitable reference genes specific for this insect is as of now undescribed. Nine reference genes, namely ACT, eEF1-γ, eIF2α, PP2A, RPL32, RPS17, PGK1, ILK and STK were evaluated. Expression patterns of the candidate reference genes were observed in a total of seventeen sample types, separated by stage of development and age. Gene stability was inferred from obtained quantification data through three widely cited evaluation algorithms i.e. BestKeeper, geNorm, and NormFinder. No single gene showed a satisfactory degree of stability throughout all developmental stages. Therefore, we propose combinations of PGK and ILK for early embryos; RPL32 and RPS17 for late embryos, all four larval instars, and pupae samples; eEF1-γ with STK for adult males; eEF1-γ with RPS17 for non-blood fed females; and eEF1-γ with eIF2α for both blood-fed females and cell culture. The results from this study should be able to provide a more informed selection of normalizing genes during qPCR in Ae.albopictus.
Dragonflies of the genus Orthetrum are members of the suborder Anisoptera, family Libellulidae. There are species pairs whose members are not easily separated from each other by morphological characters. In the present study, the DNA nucleotide sequences of mitochondrial and nuclear genes were employed to elucidate the phylogeny and systematics of Orthetrum dragonflies. Phylogenetic analyses could not resolve the various subfamilies of the family Libellulidae unequivocally. The nuclear 28S rRNA gene is highly conserved and could not resolve congeneric species of Orthetrum. Individual mitochondrial genes (COI, COII, and 16S rRNA) and combination of these genes as well as the nuclear ITS1&2 genes clearly differentiate morphologically similar species, such as the reddish species pairs O. chrysis and O. testaceum, and the bluish-coloured species O. glaucum and O. luzonicum. This study also reveals distinct genetic lineages between O. pruinosum schneideri (occurring in Malaysia) and O. pruinosum neglectum (occurring north of Peninsular Malaysia from India to Japan), indicating these taxa are cryptic species.
Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities.
Anopheles farauti is the primary malaria vector throughout the coastal regions of the Southwest Pacific. A shift in peak biting time from late to early in the night occurred following widespread indoor residue spraying of dichlorodiphenyltrichloro-ethane (DDT) and has persisted in some island populations despite the intervention ending decades ago. We used mitochondrial cytochrome oxidase I (COI) sequence data and 12 newly developed microsatellite markers to assess the population genetic structure of this malaria vector in the Solomon Archipelago. With geographically distinct differences in peak A. farauti night biting time observed in the Solomon Archipelago, we tested the hypothesis that strong barriers to gene flow exist in this region. Significant and often large fixation index (FST) values were found between different island populations for the mitochondrial and nuclear markers, suggesting highly restricted gene flow between islands. Some discordance in the location and strength of genetic breaks was observed between the mitochondrial and microsatellite markers. Since early night biting A. farauti individuals occur naturally in all populations, the strong gene flow barriers that we have identified in the Solomon Archipelago lend weight to the hypothesis that the shifts in peak biting time from late to early night have appeared independently in these disconnected island populations. For this reason, we suggest that insecticide impregnated bed nets and indoor residue spraying are unlikely to be effective as control tools against A. farauti occurring elsewhere, and if used, will probably result in peak biting time behavioural shifts similar to that observed in the Solomon Islands.