Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Antinori S, Galimberti L, Milazzo L, Corbellino M
    Acta Trop, 2013 Feb;125(2):191-201.
    PMID: 23088834 DOI: 10.1016/j.actatropica.2012.10.008
    Plasmodium knowlesi was initially identified in the 30s as a natural Plasmodium of Macaca fascicularis monkey also capable of experimentally infecting humans. It gained a relative notoriety in the mid-30s as an alternative to Plasmodium vivax in the treatment of the general paralysis of the insane (neurosyphilis). In 1965 the first natural human infection was described in a US military surveyor coming back from the Pahang jungle of the Malaysian peninsula. P. knowlesi was again brought to the attention of the medical community when in 2004, Balbir Singh and his co-workers reported that about 58% of malaria cases observed in the Kapit district of the Malaysian Borneo were actually caused by P. knowlesi. In the following years several reports showed that P. knowlesi is much more widespread than initially thought with cases reported across Southeast Asia. This infection should also be considered in the differential diagnosis of any febrile travellers coming back from a recent travel to forested areas of Southeast Asia. P. knowlesi can cause severe malaria with a rate of 6-9% and with a case fatality rate of 3%. Respiratory distress, acute renal failure, shock and hyperbilirubinemia are the most frequently observed complications of severe P. knowlesi malaria. Chloroquine is considered the treatment of choice of uncomplicated malaria caused by P. knowlesi.
    Matched MeSH terms: Insect Vectors/parasitology*
  2. Konradsen F, van der Hoek W, Amerasinghe FP, Mutero C, Boelee E
    Acta Trop, 2004 Jan;89(2):99-108.
    PMID: 14732233
    Traditionally, engineering and environment-based interventions have contributed to the prevention of malaria in Asia. However, with the introduction of DDT and other potent insecticides, chemical control became the dominating strategy. The renewed interest in environmental-management-based approaches for the control of malaria vectors follows the rapid development of resistance by mosquitoes to the widely used insecticides, the increasing cost of developing new chemicals, logistical constraints involved in the implementation of residual-spraying programs and the environmental concerns linked to the use of persistent organic pollutants. To guide future research and operational agendas focusing on environmental-control interventions, it is necessary to learn from the successes and failures from the time before the introduction of insecticides. The objective of this paper is to describe the experiences gained in Asia with early vector control interventions focusing on cases from the former Indian Punjab, Malaysia and Sri Lanka. The paper deals primarily with the agricultural engineering and land and water management vector control interventions implemented in the period 1900-1950. The selected cases are discussed in the wider context of environment-based approaches for the control of malaria vectors, including current relevance. Clearly, some of the interventions piloted and implemented early in the last century still have relevance today but generally in a very site-specific manner and in combination with other preventive and curative activities. Some of the approaches followed earlier on to support implementation would not be acceptable or feasible today, from a social or environmental point of view.
    Matched MeSH terms: Insect Vectors/parasitology
  3. Hii JL, Kan S, Vun YS, Chin KF, Tambakau S, Chan MK, et al.
    Ann Trop Med Parasitol, 1988 Feb;82(1):91-101.
    PMID: 3041932
    Holoendemic malaria transmission in two small isolated forest communities and a coastal village was studied by (1) all night human bait collections of Anopheles species from inside and outside houses and (2) buffalo-biting and CDC light-trapping catches during March and November 1984. During the same period thick and thin blood films were collected from the human population, and spleen rates were determined in children from two to nine years of age. Using both the immunoradiometric assay (IRMA) and the dissection technique, more sporozoite-positive infections were detected in An. balabacensis and An. flavirostris in November than in March. IRMA confirmed the presence of Plasmodium falciparum sporozoites. An average of 76.2% of the An. balabacensis population lived long enough to have reached a point where infectivity with P. falciparum was possible in November. Although fewer than five adult females bit humans per night at any time, a resident could theoretically have received more than 160 infective bites in one year. A high frequency of feeding on humans, coupled with increased anopheline life expectancy, contributed to high estimates of falciparum malaria vectorial capacity (number of infections distributed per case per day); for An. balabacensis (1.44-7.44 in March and 9.97-19.7 in November) and for An. flavirostris (0.19-5.14 in March and 6.27-15.8 in November). These high values may explain the increased malaria parasite rates obtained from at least two forest communities. Correlation between actual and calculated rates of gametocytaemia was poorest in Kapitangan due to inadequate sampling of the human population. In Banggi island, malaria is stable and holoendemic, and the population enjoys a high degree of immunity.
    Matched MeSH terms: Insect Vectors/parasitology*
  4. Chiang GL, Samarawickrema WA, Eng KL, Cheong WH, Sulaiman I, Yap HH
    Ann Trop Med Parasitol, 1986 Apr;80(2):235-44.
    PMID: 2875691
    Surveillance methods for Coquillettidia crassipes were studied in an open housing estate near Kuala Lumpur using three types of traps Trinidad 10 trap, modified Lard can trap and IMR trap, each baited with chicken or pigeon. All traps attracted Cq. crassipes. There was no significant difference in the catches in the three traps. There was also no significant difference between chicken and pigeon as bait. Catches at heights of 1.5, 3, 4.5 and 6 m did not show any significant difference in density. Cq. crassipes was active at night with an early peak during the first hour of the night and a minor peak between 0100 and 0200 hours. The activity of the parous and nulliparous sections of the population was similar, except that a higher proportion of the parous females was active during the second peak compared with the nulliparous females. The parous rate was 22.3%, and the probability of survival through one day for two gonotrophic cycles was 0.711 and 0.650. The infection rate for Cardiofilaria was 29 out of 1052 (2.76%) and the infective rate (L3 larvae) was 13 out of 1052 (1.24%). 48.3% of the infected Cq. crassipes had a worm burden of more than ten larvae. One of the chickens in the traps was positive for microfilariae of Cardiofilaria four weeks after exposure as bait. Laboratory bred Cq. crassipes fed on this chicken produced infective larvae in ten days, and these were inoculated into clean chickens and pigeons. Microfilariae appeared in the chickens but not in pigeons. The adult worms recovered await identification.
    Matched MeSH terms: Insect Vectors/parasitology*
  5. Zheng L, Wang S, Romans P, Zhao H, Luna C, Benedict MQ
    BMC Genet, 2003 Oct 24;4:16.
    PMID: 14577840
    Anopheles gambiae females are the world's most successful vectors of human malaria. However, a fraction of these mosquitoes is refractory to Plasmodium development. L3-5, a laboratory selected refractory strain, encapsulates transforming ookinetes/early oocysts of a wide variety of Plasmodium species. Previous studies on these mosquitoes showed that one major (Pen1) and two minor (Pen2, Pen3) autosomal dominant quantitative trait loci (QTLs) control the melanotic encapsulation response against P. cynomolgi B, a simian malaria originating in Malaysia.
    Matched MeSH terms: Insect Vectors/parasitology
  6. Musa MI, Shohaimi S, Hashim NR, Krishnarajah I
    Geospat Health, 2012 Nov;7(1):27-36.
    PMID: 23242678
    Malaria remains a major health problem in Sudan. With a population exceeding 39 million, there are around 7.5 million cases and 35,000 deaths every year. The predicted distribution of malaria derived from climate factors such as maximum and minimum temperatures, rainfall and relative humidity was compared with the actual number of malaria cases in Sudan for the period 2004 to 2010. The predictive calculations were done by fuzzy logic suitability (FLS) applied to the numerical distribution of malaria transmission based on the life cycle characteristics of the Anopheles mosquito accounting for the impact of climate factors on malaria transmission. This information is visualized as a series of maps (presented in video format) using a geographical information systems (GIS) approach. The climate factors were found to be suitable for malaria transmission in the period of May to October, whereas the actual case rates of malaria were high from June to November indicating a positive correlation. While comparisons between the prediction model for June and the case rate model for July did not show a high degree of association (18%), the results later in the year were better, reaching the highest level (55%) for October prediction and November case rate.
    Matched MeSH terms: Insect Vectors/parasitology*
  7. Ambrose L, Cooper RD, Russell TL, Burkot TR, Lobo NF, Collins FH, et al.
    Int J Parasitol, 2014 Mar;44(3-4):225-33.
    PMID: 24440418 DOI: 10.1016/j.ijpara.2013.12.001
    Anopheles farauti is the primary malaria vector throughout the coastal regions of the Southwest Pacific. A shift in peak biting time from late to early in the night occurred following widespread indoor residue spraying of dichlorodiphenyltrichloro-ethane (DDT) and has persisted in some island populations despite the intervention ending decades ago. We used mitochondrial cytochrome oxidase I (COI) sequence data and 12 newly developed microsatellite markers to assess the population genetic structure of this malaria vector in the Solomon Archipelago. With geographically distinct differences in peak A. farauti night biting time observed in the Solomon Archipelago, we tested the hypothesis that strong barriers to gene flow exist in this region. Significant and often large fixation index (FST) values were found between different island populations for the mitochondrial and nuclear markers, suggesting highly restricted gene flow between islands. Some discordance in the location and strength of genetic breaks was observed between the mitochondrial and microsatellite markers. Since early night biting A. farauti individuals occur naturally in all populations, the strong gene flow barriers that we have identified in the Solomon Archipelago lend weight to the hypothesis that the shifts in peak biting time from late to early night have appeared independently in these disconnected island populations. For this reason, we suggest that insecticide impregnated bed nets and indoor residue spraying are unlikely to be effective as control tools against A. farauti occurring elsewhere, and if used, will probably result in peak biting time behavioural shifts similar to that observed in the Solomon Islands.
    Matched MeSH terms: Insect Vectors/parasitology*
  8. Kittayapong P, Edman JD, Harrison BA, Delorme DR
    J Med Entomol, 1992 May;29(3):379-83.
    PMID: 1625287
    The relationship among body size (as indicated by wing length), age (as indicated by parity dissections), and malaria infection were observed in host-seeking Anopheles maculatus Theobald females collected in aboriginal villages of peninsular Malaysia. Both ELISA and salivary gland dissections were used to determine malaria infection. The wings of parous females were significantly longer than those of nulliparous females, suggesting that larger females live longer than smaller ones, and thus have a higher vectorial capacity. Body size differences were not detected between infected parous and uninfected parous females. Females infected with only oocysts were significantly larger than females infected with sporozoites. No correlation was found between the number of oocysts or sporozoites and body size in this small sample.
    Matched MeSH terms: Insect Vectors/parasitology
  9. Vythilingam I, Boaz L, Wa N
    J Am Mosq Control Assoc, 1998 Sep;14(3):243-7.
    PMID: 9813819
    Accurate identification of filarial parasites in mosquitoes poses a major problem for the coordination of filariasis control programs. Traditional methods are tedious, and some are not specific enough to give satisfactory results. Amplification of specific gene sequences by primer-directed polymerase chain reaction (PCR) has been increasingly utilized as a diagnostic tool. However, current protocols for the extraction of parasite DNA from mosquito samples are tedious and could lead to failure of PCR amplification. We demonstrate that the use of Chelex is an efficient method for DNA extraction from mosquitoes and the parasite and that PCR amplification with primers specific for Brugia malayi yields a band of the expected size. The PCR products were transferred to a nylon membrane with Southern blotting, and a B. malayi-specific digoxigenin-labeled probe confirmed the sequence similarity of the PCR-amplified fragment and increased the sensitivity of the PCR assay. Use of this probe enabled us to detect PCR-amplified product from B. malayi even when a product was not visible on an ethidium bromide-stained agarose gel. This increased sensitivity allowed us to detect the parasite in the heads of mosquitoes.
    Matched MeSH terms: Insect Vectors/parasitology
  10. Tan CH, Vythilingam I, Matusop A, Chan ST, Singh B
    Malar J, 2008;7:52.
    PMID: 18377652 DOI: 10.1186/1475-2875-7-52
    A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit.
    Matched MeSH terms: Insect Vectors/parasitology
  11. Sulaiman S, Sohadi AR, Yunus H, Iberahim R
    Med Vet Entomol, 1988 Jan;2(1):1-6.
    PMID: 2980156
    The role of some adult flies (Diptera: Cyclorrhapha) as carriers of helminth parasites of man was studied at four sites in Malaysia: a refuse dump, where no helminth-positive flies were detected, and in three peri-domestic situations where four species of flies carried up to three types of nematodes. The dominant fly species Chrysomya megacephala (Fabricius) carried eggs of the roundworm Ascaris lumbricoides L., the pinworm Trichuris trichiura (L.) and hookworm on the adult external body surface and in the gut lumen, in association with Bukit Lanjan aborigines. Chrysomya rufifacies (Macquart) and Sarcophaga spp. also had Ascaris lumbricoides and Trichurus trichiura eggs in their gut contents. Human helminths were not recovered from Lispe leucospila (Wiedemann), Lucilia cuprina (Wiedemann) or the housefly Musca domestica L. In an urban slum area of Kuala Lumpur city, filariform larvae identified as the hookworm Necator americanus (Stiles) occurred in the intestines of the face-fly Musca sorbens Wiedemann (22 larvae per 100 flies) and of Chrysomya megacephala (4.5 larvae per 100 flies). This concentration of apparently infective N. americanus in M. sorbens, a fly which often breeds in faeces and browses on human skin, could have transmission potential.
    Matched MeSH terms: Insect Vectors/parasitology*
  12. Takaoka H, Fukuda M, Otsuka Y, Aoki C, Uni S, Bain O
    Med Vet Entomol, 2012 Dec;26(4):372-8.
    PMID: 22827756 DOI: 10.1111/j.1365-2915.2012.01023.x
    Studies of blackfly vectors of Onchocerca dewittei japonica Uni, Bain & Takaoka (Spirurida: Onchocercidae), a parasite of wild boar implicated in the aetiology of zoonotic onchocerciasis in Japan, and six other zoonotic Onchocerca species of this country are reviewed. Molecular identification of infective larvae found in wild-caught female blackflies showed that Simulium bidentatum (Shiraki) (Diptera: Simuliidae) is a natural vector of O. dewittei japonica, and also Onchocerca sp. sensu Fukuda et al., another parasite of wild boar. Inoculation experiments demonstrated that Simulium arakawae Matsumura and four other Simulium species are putative vectors. Similarly, S. arakawae, S. bidentatum and Simulium oitanum (Shiraki) are putative vectors of Onchocerca eberhardi Uni & Bain and Onchocerca skrjabini Rukhlyadev, parasites of sika deer. Morphometric studies of infective larvae indicated that Onchocerca lienalis Stiles, a bovine species, is transmitted by S. arakawae, Simulium daisense (Takahasi) and Simulium kyushuense Takaoka, and that Onchocerca sp. sensu Takaoka & Bain, another bovine species, is transmitted by S. arakawae, S. bidentatum, S. daisense and S. oitanum. Prosimulium sp. (Diptera: Simuliidae) and Simulium japonicum Matsumura are suspected vectors of Onchocerca suzukii Yagi, Bain & Shoho and O. skrjabini [Twinnia japonensis Rubtsov (Diptera: Simuliidae) may also transmit the latter], parasites of Japanese serow, following detection of the parasites' DNA genes in wild-caught blackflies.
    Matched MeSH terms: Insect Vectors/parasitology*
  13. Goh XT, Lim YAL, Lee PC, Nissapatorn V, Chua KH
    Mol Biochem Parasitol, 2021 07;244:111390.
    PMID: 34087264 DOI: 10.1016/j.molbiopara.2021.111390
    The present study aimed to examine the genetic diversity of human malaria parasites (i.e., P. falciparum, P. vivax and P. knowlesi) in Malaysia and southern Thailand targeting the 19-kDa C-terminal region of Merozoite Surface Protein-1 (MSP-119). This region is essential for the recognition and invasion of erythrocytes and it is considered one of the leading candidates for asexual blood stage vaccines. However, the genetic data of MSP-119 among human malaria parasites in Malaysia is limited and there is also a need to update the current sequence diversity of this gene region among the Thailand isolates. In this study, genomic DNA was extracted from 384 microscopy-positive blood samples collected from patients who attended the hospitals or clinics in Malaysia and malaria clinics in Thailand from the year 2008 to 2016. The MSP-119 was amplified using PCR followed by bidirectional sequencing. DNA sequences identified in the present study were subjected to Median-joining network analysis with sequences of MSP-119 obtained from GenBank. DNA sequence analysis revealed that PfMSP-119 of Malaysian and Thailand isolates was not genetically conserved as high number of haplotypes were detected and positive selection was prevalent in PfMSP-119, hence questioning its suitability to be used as a vaccine candidate. A novel haplotype (Q/TNG/L) was also detected in Thailand P. falciparum isolate. In contrast, PvMSP-119 was highly conserved, however for the first time, a non-synonymous substitution (A1657S) was reported among Malaysian isolates. As for PkMSP-119, the presence of purifying selection and low nucleotide diversity indicated that it might be a potential vaccine target for P. knowlesi.
    Matched MeSH terms: Insect Vectors/parasitology
  14. Vythilingam I, Lim YA, Venugopalan B, Ngui R, Leong CS, Wong ML, et al.
    Parasit Vectors, 2014;7:436.
    PMID: 25223878 DOI: 10.1186/1756-3305-7-436
    While transmission of the human Plasmodium species has declined, a significant increase in Plasmodium knowlesi/Plasmodium malariae cases was reported in Hulu Selangor, Selangor, Malaysia. Thus, a study was undertaken to determine the epidemiology and the vectors involved in the transmission of knowlesi malaria.
    Matched MeSH terms: Insect Vectors/parasitology*
  15. Muslim A, Fong MY, Mahmud R, Lau YL, Sivanandam S
    Parasit Vectors, 2013;6:219.
    PMID: 23898840 DOI: 10.1186/1756-3305-6-219
    In 2011, we reported occurrence of natural human infections with Brugia pahangi, a filarial worm of dogs and cats, in a surburb of Kuala Lumpur, the capital city of Malaysia. Our preliminary entomological survey at that time suggested the mosquito species Armigeres subalbatus as the vector of the zoonotic infections. In this present report, we provide biological evidence to confirm our preliminary finding.
    Matched MeSH terms: Insect Vectors/parasitology*
  16. Nguyen VL, Colella V, Greco G, Fang F, Nurcahyo W, Hadi UK, et al.
    Parasit Vectors, 2020 Aug 15;13(1):420.
    PMID: 32799914 DOI: 10.1186/s13071-020-04288-8
    BACKGROUND: Ticks and fleas are considered amongst the most important arthropod vectors of medical and veterinary concern due to their ability to transmit pathogens to a range of animal species including dogs, cats and humans. By sharing a common environment with humans, companion animal-associated parasitic arthropods may potentially transmit zoonotic vector-borne pathogens (VBPs). This study aimed to molecularly detect pathogens from ticks and fleas from companion dogs and cats in East and Southeast Asia.

    METHODS: A total of 392 ticks and 248 fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam, and molecularly screened for the presence of pathogens. Ticks were tested for Rickettsia spp., Anaplasma spp., Ehrlichia spp., Babesia spp. and Hepatozoon spp. while fleas were screened for the presence of Rickettsia spp. and Bartonella spp.

    RESULT: Of the 392 ticks tested, 37 (9.4%) scored positive for at least one pathogen with Hepatozoon canis being the most prevalent (5.4%), followed by Ehrlichia canis (1.8%), Babesia vogeli (1%), Anaplasma platys (0.8%) and Rickettsia spp. (1%) [including Rickettsia sp. (0.5%), Rickettsia asembonensis (0.3%) and Rickettsia felis (0.3%)]. Out of 248 fleas tested, 106 (42.7%) were harboring at least one pathogen with R. felis being the most common (19.4%), followed by Bartonella spp. (16.5%), Rickettsia asembonensis (10.9%) and "Candidatus Rickettsia senegalensis" (0.4%). Furthermore, 35 Rhipicephalus sanguineus ticks were subjected to phylogenetic analysis, of which 34 ticks belonged to the tropical and only one belonged to the temperate lineage (Rh. sanguineus (sensu stricto)).

    CONCLUSION: Our data reveals the circulation of different VBPs in ticks and fleas of dogs and cats from Asia, including zoonotic agents, which may represent a potential risk to animal and human health.

    Matched MeSH terms: Insect Vectors/parasitology
  17. Tabasi M, Alesheikh AA, Sofizadeh A, Saeidian B, Pradhan B, AlAmri A
    Parasit Vectors, 2020 Nov 11;13(1):572.
    PMID: 33176858 DOI: 10.1186/s13071-020-04447-x
    BACKGROUND: Zoonotic cutaneous leishmaniasis (ZCL) is a neglected tropical disease worldwide, especially the Middle East. Although previous works attempt to model the ZCL spread using various environmental factors, the interactions between vectors (Phlebotomus papatasi), reservoir hosts, humans, and the environment can affect its spread. Considering all of these aspects is not a trivial task.

    METHODS: An agent-based model (ABM) is a relatively new approach that provides a framework for analyzing the heterogeneity of the interactions, along with biological and environmental factors in such complex systems. The objective of this research is to design and develop an ABM that uses Geospatial Information System (GIS) capabilities, biological behaviors of vectors and reservoir hosts, and an improved Susceptible-Exposed-Infected-Recovered (SEIR) epidemic model to explore the spread of ZCL. Various scenarios were implemented to analyze the future ZCL spreads in different parts of Maraveh Tappeh County, in the northeast region of Golestan Province in northeastern Iran, with alternative socio-ecological conditions.

    RESULTS: The results confirmed that the spread of the disease arises principally in the desert, low altitude areas, and riverside population centers. The outcomes also showed that the restricting movement of humans reduces the severity of the transmission. Moreover, the spread of ZCL has a particular temporal pattern, since the most prevalent cases occurred in the fall. The evaluation test also showed the similarity between the results and the reported spatiotemporal trends.

    CONCLUSIONS: This study demonstrates the capability and efficiency of ABM to model and predict the spread of ZCL. The results of the presented approach can be considered as a guide for public health management and controlling the vector population .

    Matched MeSH terms: Insect Vectors/parasitology
  18. Tan LH, Fong MY, Mahmud R, Muslim A, Lau YL, Kamarulzaman A
    Parasitol Int, 2011 Jan;60(1):111-3.
    PMID: 20951228 DOI: 10.1016/j.parint.2010.09.010
    Five local Malaysian patients with clinical manifestations consistent with lymphatic filariasis were referred to our medical centre between 2003 and 2006. Although no microfilariae (mf) were detected in their nocturnal blood samples, all were diagnosed to have lymphatic filariasis on the basis of clinical findings and positive serology results. PCR on their blood samples revealed that two of the patients were infected with Brugia pahangi, an animal filarial worm hitherto not known to cause human disease in the natural environment. All the patients were successfully treated with anti-filarial drugs: four patients were treated with a combination of diethylcarbamazine (DEC) and albendazole, and one with doxycycline. Four of them were residents of Petaling Jaya, a residential suburbia located 10 km southwest of Kuala Lumpur city, Malaysia. The fifth patient was a frequent visitor of the suburbia. This suburbia has no history or record of B. malayi infection. The most likely vector of the worm was Armigeres subalbatus as extensive entomological surveys within the suburbia revealed only adult females of this mosquito species were infected with B. pahangi larvae. Wild monkeys caught in the suburbia were free from B. pahangi mf, but domestic cats were mf positive. This suggests that infected cats might be the source of the zoonotic infection in the suburbia.
    Matched MeSH terms: Insect Vectors/parasitology
  19. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al.
    Parasitol Int, 2016 Jun;65(3):276-84.
    PMID: 26873539 DOI: 10.1016/j.parint.2016.02.003
    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.
    Matched MeSH terms: Insect Vectors/parasitology
  20. Uni S, Fukuda M, Ogawa K, Lim YA, Agatsuma T, Bunchom N, et al.
    Parasitol Int, 2017 Oct;66(5):593-595.
    PMID: 28648713 DOI: 10.1016/j.parint.2017.06.006
    An 11-year-old boy living in Otsu City, Shiga Prefecture, Kansai Region, Western Honshu, Japan had zoonotic onchocercosis. The patient developed a painful swelling on the little finger of his left hand. The worm detected in the excised mass had external transverse ridges but did not have inner striae in the cuticle. On the basis of the parasite's histopathological characteristics, the causative agent was identified as a female Onchocerca dewittei japonica (Spirurida: Onchocercidae). The species of the filarial parasite was confirmed by sequencing the cox1 gene of the parasite. The Japanese wild boar Sus scrofa leucomystax is a definitive host for O. dewittei japonica, which is then transmitted by blackflies as the vector to humans. The current case described occurred in the Kansai Region, Western Honshu, where such infections were previously not reported.
    Matched MeSH terms: Insect Vectors/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links