Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Rahman WA, Adanan CR, Abu Hassan A
    PMID: 12693589
    Using the cow-baited trap (CBT) method, 1,845 Anopheles mosquitos, comprising 14 species, were caught in malaria-endemic area of Hulu Perak district, Peninsular Malaysia. The two dominant species were An. barbirostris (18.59%) and An. aconitus (18.86%). Anopheles maculatus, the main malaria vector, constituted 9.11% of the total number of mosquitos sampled. Three hundred and seventy-seven Anopheles larvae, comprising 8 species, were sampled using the North Carolina Biological Station dipper. Anopheles barbirostris larvae amounted to 64.69% of the total number of larvae; An. aconitus accounted for 10.65% of larvae. Seven habitats were identified as breeding places of Anopheles. Most species were found to breed in paddies, fishponds, and rivers. Other less popular habitats were temporary pools, mountain streams, and spring wells.
    Matched MeSH terms: Insect Vectors/parasitology*
  2. Pramual P, Bunchom N, Saijuntha W, Tada I, Suganuma N, Agatsuma T
    Trop Biomed, 2019 Dec 01;36(4):938-957.
    PMID: 33597465
    Genetic variation based on mitochondrial cytochrome c oxidase I (COI) and II (COII) sequences was investigated for three black fly nominal species, Simulium metallicum Bellardi complex, S. callidum Dyar and Shannon, and S. ochraceum Walker complex, which are vectors of human onchocerciasis from Guatemala. High levels of genetic diversity were found in S. metallicum complex and S. ochraceum complex with maximum intraspecific genetic divergences of 11.39% and 4.25%, respectively. Levels of genetic diversity of these nominal species are consistent with species status for both of them as they are cytologically complexes of species. Phylogenetic analyses revealed that the S. metallicum complex from Guatemala divided into three distinct clades, two with members of this species from several Central and South American countries and another exclusively from Mexico. The Simulium ochraceum complex from Guatemala formed a clade with members of this species from Mexico and Costa Rica while those from Ecuador and Colombia formed another distinct clade. Very low diversity in S. callidum was found for both genes with maximum intraspecific genetic divergence of 0.68% for COI and 0.88% for COII. Low genetic diversity in S. callidum might be a consequence of the result being informative of only recent population history of the species.
    Matched MeSH terms: Insect Vectors/parasitology
  3. Rahman WA, Che'Rus A, Ahmad AH
    PMID: 9561615
    Until today, malaria is still one of the most important diseases in Malaysia. This is because Malaysia is located within the equatorial zone with high temperatures and humidities, usually important for the transmission of malaria. The number of malaria cases were estimated to be around 300,000 before the launching of the Malaria Eradication Program (MEP). The program was successful in reducing the numbers progressively during the 1967-1982 period. During the period 1980-1991, the highest number of malaria cases recorded for the country was 65,283 in 1989 (16,902 in Peninsular Malaysia, 47,545 in Sabah and 836 in Sarawak) whilst the lowest was 22,218 (10,069 in Peninsular Malaysia, 11,290 in Sabah and 859 in Sarawak) in 1983. In Malaysia, there are 434 species of mosquitos, representing 20 genera. Of these, 75 species are Anopheles that comprise of 2 subgenus, i.e. Anopheles and Cellia. Of the 75 species, only 9 have been reported as vectors: An. maculatus, An balabacensis, An. dirus, An. letifer An. campestris, An. sundaicus, An. donaldi, An. leucophyrus and An. flavirostris. The behavior, seasonal abundance, biting activities and breeding sites of these species are discussed.
    Matched MeSH terms: Insect Vectors/parasitology*
  4. Tabasi M, Alesheikh AA, Sofizadeh A, Saeidian B, Pradhan B, AlAmri A
    Parasit Vectors, 2020 Nov 11;13(1):572.
    PMID: 33176858 DOI: 10.1186/s13071-020-04447-x
    BACKGROUND: Zoonotic cutaneous leishmaniasis (ZCL) is a neglected tropical disease worldwide, especially the Middle East. Although previous works attempt to model the ZCL spread using various environmental factors, the interactions between vectors (Phlebotomus papatasi), reservoir hosts, humans, and the environment can affect its spread. Considering all of these aspects is not a trivial task.

    METHODS: An agent-based model (ABM) is a relatively new approach that provides a framework for analyzing the heterogeneity of the interactions, along with biological and environmental factors in such complex systems. The objective of this research is to design and develop an ABM that uses Geospatial Information System (GIS) capabilities, biological behaviors of vectors and reservoir hosts, and an improved Susceptible-Exposed-Infected-Recovered (SEIR) epidemic model to explore the spread of ZCL. Various scenarios were implemented to analyze the future ZCL spreads in different parts of Maraveh Tappeh County, in the northeast region of Golestan Province in northeastern Iran, with alternative socio-ecological conditions.

    RESULTS: The results confirmed that the spread of the disease arises principally in the desert, low altitude areas, and riverside population centers. The outcomes also showed that the restricting movement of humans reduces the severity of the transmission. Moreover, the spread of ZCL has a particular temporal pattern, since the most prevalent cases occurred in the fall. The evaluation test also showed the similarity between the results and the reported spatiotemporal trends.

    CONCLUSIONS: This study demonstrates the capability and efficiency of ABM to model and predict the spread of ZCL. The results of the presented approach can be considered as a guide for public health management and controlling the vector population .

    Matched MeSH terms: Insect Vectors/parasitology
  5. Takaoka H, Fukuda M, Otsuka Y, Aoki C, Uni S, Bain O
    Med Vet Entomol, 2012 Dec;26(4):372-8.
    PMID: 22827756 DOI: 10.1111/j.1365-2915.2012.01023.x
    Studies of blackfly vectors of Onchocerca dewittei japonica Uni, Bain & Takaoka (Spirurida: Onchocercidae), a parasite of wild boar implicated in the aetiology of zoonotic onchocerciasis in Japan, and six other zoonotic Onchocerca species of this country are reviewed. Molecular identification of infective larvae found in wild-caught female blackflies showed that Simulium bidentatum (Shiraki) (Diptera: Simuliidae) is a natural vector of O. dewittei japonica, and also Onchocerca sp. sensu Fukuda et al., another parasite of wild boar. Inoculation experiments demonstrated that Simulium arakawae Matsumura and four other Simulium species are putative vectors. Similarly, S. arakawae, S. bidentatum and Simulium oitanum (Shiraki) are putative vectors of Onchocerca eberhardi Uni & Bain and Onchocerca skrjabini Rukhlyadev, parasites of sika deer. Morphometric studies of infective larvae indicated that Onchocerca lienalis Stiles, a bovine species, is transmitted by S. arakawae, Simulium daisense (Takahasi) and Simulium kyushuense Takaoka, and that Onchocerca sp. sensu Takaoka & Bain, another bovine species, is transmitted by S. arakawae, S. bidentatum, S. daisense and S. oitanum. Prosimulium sp. (Diptera: Simuliidae) and Simulium japonicum Matsumura are suspected vectors of Onchocerca suzukii Yagi, Bain & Shoho and O. skrjabini [Twinnia japonensis Rubtsov (Diptera: Simuliidae) may also transmit the latter], parasites of Japanese serow, following detection of the parasites' DNA genes in wild-caught blackflies.
    Matched MeSH terms: Insect Vectors/parasitology*
  6. Galinski MR, Barnwell JW
    Trends Parasitol, 2009 May;25(5):200-4.
    PMID: 19345613 DOI: 10.1016/j.pt.2009.02.002
    Four human deaths caused by Plasmodium knowlesi, a simian malaria species, are stimulating a surge of public health interest and clinical vigilance in vulnerable areas of Southeast Asia. We, and other colleagues, emphasize that these cases, identified in Malaysia, are a clear warning that health facilities and clinicians must rethink the diagnosis and treatment of malaria cases presumed to be caused by a less virulent human malaria species, Plasmodium malariae.
    Matched MeSH terms: Insect Vectors/parasitology
  7. Ambrose L, Cooper RD, Russell TL, Burkot TR, Lobo NF, Collins FH, et al.
    Int J Parasitol, 2014 Mar;44(3-4):225-33.
    PMID: 24440418 DOI: 10.1016/j.ijpara.2013.12.001
    Anopheles farauti is the primary malaria vector throughout the coastal regions of the Southwest Pacific. A shift in peak biting time from late to early in the night occurred following widespread indoor residue spraying of dichlorodiphenyltrichloro-ethane (DDT) and has persisted in some island populations despite the intervention ending decades ago. We used mitochondrial cytochrome oxidase I (COI) sequence data and 12 newly developed microsatellite markers to assess the population genetic structure of this malaria vector in the Solomon Archipelago. With geographically distinct differences in peak A. farauti night biting time observed in the Solomon Archipelago, we tested the hypothesis that strong barriers to gene flow exist in this region. Significant and often large fixation index (FST) values were found between different island populations for the mitochondrial and nuclear markers, suggesting highly restricted gene flow between islands. Some discordance in the location and strength of genetic breaks was observed between the mitochondrial and microsatellite markers. Since early night biting A. farauti individuals occur naturally in all populations, the strong gene flow barriers that we have identified in the Solomon Archipelago lend weight to the hypothesis that the shifts in peak biting time from late to early night have appeared independently in these disconnected island populations. For this reason, we suggest that insecticide impregnated bed nets and indoor residue spraying are unlikely to be effective as control tools against A. farauti occurring elsewhere, and if used, will probably result in peak biting time behavioural shifts similar to that observed in the Solomon Islands.
    Matched MeSH terms: Insect Vectors/parasitology*
  8. Zheng L, Wang S, Romans P, Zhao H, Luna C, Benedict MQ
    BMC Genet, 2003 Oct 24;4:16.
    PMID: 14577840
    Anopheles gambiae females are the world's most successful vectors of human malaria. However, a fraction of these mosquitoes is refractory to Plasmodium development. L3-5, a laboratory selected refractory strain, encapsulates transforming ookinetes/early oocysts of a wide variety of Plasmodium species. Previous studies on these mosquitoes showed that one major (Pen1) and two minor (Pen2, Pen3) autosomal dominant quantitative trait loci (QTLs) control the melanotic encapsulation response against P. cynomolgi B, a simian malaria originating in Malaysia.
    Matched MeSH terms: Insect Vectors/parasitology
  9. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al.
    Parasitol Int, 2016 Jun;65(3):276-84.
    PMID: 26873539 DOI: 10.1016/j.parint.2016.02.003
    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.
    Matched MeSH terms: Insect Vectors/parasitology
  10. Konradsen F, van der Hoek W, Amerasinghe FP, Mutero C, Boelee E
    Acta Trop, 2004 Jan;89(2):99-108.
    PMID: 14732233
    Traditionally, engineering and environment-based interventions have contributed to the prevention of malaria in Asia. However, with the introduction of DDT and other potent insecticides, chemical control became the dominating strategy. The renewed interest in environmental-management-based approaches for the control of malaria vectors follows the rapid development of resistance by mosquitoes to the widely used insecticides, the increasing cost of developing new chemicals, logistical constraints involved in the implementation of residual-spraying programs and the environmental concerns linked to the use of persistent organic pollutants. To guide future research and operational agendas focusing on environmental-control interventions, it is necessary to learn from the successes and failures from the time before the introduction of insecticides. The objective of this paper is to describe the experiences gained in Asia with early vector control interventions focusing on cases from the former Indian Punjab, Malaysia and Sri Lanka. The paper deals primarily with the agricultural engineering and land and water management vector control interventions implemented in the period 1900-1950. The selected cases are discussed in the wider context of environment-based approaches for the control of malaria vectors, including current relevance. Clearly, some of the interventions piloted and implemented early in the last century still have relevance today but generally in a very site-specific manner and in combination with other preventive and curative activities. Some of the approaches followed earlier on to support implementation would not be acceptable or feasible today, from a social or environmental point of view.
    Matched MeSH terms: Insect Vectors/parasitology
  11. Chang MS, Ho BC, Chan KL
    Trop. Med. Parasitol., 1991 Jun;42(2):95-102.
    PMID: 1680246
    A control programme against subperiodic brugian filariasis was implemented in three villages, (Kg. Ampungan, Kg. Sebangkoi and Kg. Sebamban) in Sarawak, Malaysia. In Kampong Ampungan, the mass administration of diethylcarbamazine (DEC-citrate) combined with residual house spraying of pirimiphos-methyl reduced microfilarial rate to 8% of the pre-treatment level and microfilarial density (MfD50) to 44% of the pre-treatment level over a period of four years. In Kampong Sebangkoi and Kampong Sebamban, where only mass DEC therapy was applied, the microfilarial rate and MfD50 declined distinctly in the second blood survey but increased gradually in two subsequent follow-up blood surveys. In Kg, Ampungan, we observed a significant reduction of infective biting rate (88.3%), infection rate (62.5%) and transmission potential (88.1%) of Mansonia bonneae at the fourth spray round. The corresponding reduction rates in Kg. Sebangkoi and Kg. Sebamban were 35.3%, 26.7%, 42.2% and 24%, 30.8% and 15.4% respectively. The biting density of the vector was reduced by 79.8% indoors and 31.8% outdoors at the sprayed village, while only a slight decrease in densities (17.9% indoors and 12.4% outdoors) was observed at the unsprayed village. Bioassay tests revealed that pirimiphos-methyl had a substantial fumigant effect on the vector. The integrated control measure in controlling subperiodic brugian filariasis is discussed.
    Matched MeSH terms: Insect Vectors/parasitology
  12. Hii JL, Kan S, Vun YS, Chin KF, Lye MS, Mak JW, et al.
    Trans R Soc Trop Med Hyg, 1985;79(5):677-80.
    PMID: 3913069
    Seven villages in Banggi Island, Sabah, Malaysia, were surveyed four times to evaluate the roles of local mosquitoes as vectors of malaria and Bancroftian filariasis. 11 species of Anopheles were found biting man. 53.9% of the anophelines caught were An. flavirostris, 27.1% An. balabacensis, 6% An. donaldi and 4.2% An. subpictus. Infective malaria sporozoites, probably of human origin, were found in two of 336 An. flavirostris and 12 of 308 An. balabacensis. Sporozoites, probably of a non-human Plasmodium, were found in An. umbrosus. Nine of 1001 An. flavirostris and four of 365 An. balabacensis harboured L2 or L3 filarial larvae identified as those of Wuchereria bancrofti. This is the first record of An. flavirostris as a natural vector of malaria and W. bancrofti in Sabah.
    Matched MeSH terms: Insect Vectors/parasitology*
  13. Chiang GL
    PMID: 7973951
    The genus Mansonia is divided into two subgenera, Mansonia and Mansonioides. The subgenus Mansonioides includes the important vectors of lymphatic filariasis caused by Brugia malayi in South and Southeast Asia. Six species of this subgenus are vectors of two types of brugian filariasis, periodic and subperiodic. All six species, viz Mansonia bonneae, Ma. dives, Ma. uniformis, Ma. annulifera, Ma. annulata and Ma. indiana are present in this country. The ecological factors governing the larval and adult biology and their control measures are discussed.
    Matched MeSH terms: Insect Vectors/parasitology
  14. Goh XT, Lim YAL, Lee PC, Nissapatorn V, Chua KH
    Mol Biochem Parasitol, 2021 07;244:111390.
    PMID: 34087264 DOI: 10.1016/j.molbiopara.2021.111390
    The present study aimed to examine the genetic diversity of human malaria parasites (i.e., P. falciparum, P. vivax and P. knowlesi) in Malaysia and southern Thailand targeting the 19-kDa C-terminal region of Merozoite Surface Protein-1 (MSP-119). This region is essential for the recognition and invasion of erythrocytes and it is considered one of the leading candidates for asexual blood stage vaccines. However, the genetic data of MSP-119 among human malaria parasites in Malaysia is limited and there is also a need to update the current sequence diversity of this gene region among the Thailand isolates. In this study, genomic DNA was extracted from 384 microscopy-positive blood samples collected from patients who attended the hospitals or clinics in Malaysia and malaria clinics in Thailand from the year 2008 to 2016. The MSP-119 was amplified using PCR followed by bidirectional sequencing. DNA sequences identified in the present study were subjected to Median-joining network analysis with sequences of MSP-119 obtained from GenBank. DNA sequence analysis revealed that PfMSP-119 of Malaysian and Thailand isolates was not genetically conserved as high number of haplotypes were detected and positive selection was prevalent in PfMSP-119, hence questioning its suitability to be used as a vaccine candidate. A novel haplotype (Q/TNG/L) was also detected in Thailand P. falciparum isolate. In contrast, PvMSP-119 was highly conserved, however for the first time, a non-synonymous substitution (A1657S) was reported among Malaysian isolates. As for PkMSP-119, the presence of purifying selection and low nucleotide diversity indicated that it might be a potential vaccine target for P. knowlesi.
    Matched MeSH terms: Insect Vectors/parasitology
  15. Hii JL, Kan S, Vun YS, Chin KF, Tambakau S, Chan MK, et al.
    Ann Trop Med Parasitol, 1988 Feb;82(1):91-101.
    PMID: 3041932
    Holoendemic malaria transmission in two small isolated forest communities and a coastal village was studied by (1) all night human bait collections of Anopheles species from inside and outside houses and (2) buffalo-biting and CDC light-trapping catches during March and November 1984. During the same period thick and thin blood films were collected from the human population, and spleen rates were determined in children from two to nine years of age. Using both the immunoradiometric assay (IRMA) and the dissection technique, more sporozoite-positive infections were detected in An. balabacensis and An. flavirostris in November than in March. IRMA confirmed the presence of Plasmodium falciparum sporozoites. An average of 76.2% of the An. balabacensis population lived long enough to have reached a point where infectivity with P. falciparum was possible in November. Although fewer than five adult females bit humans per night at any time, a resident could theoretically have received more than 160 infective bites in one year. A high frequency of feeding on humans, coupled with increased anopheline life expectancy, contributed to high estimates of falciparum malaria vectorial capacity (number of infections distributed per case per day); for An. balabacensis (1.44-7.44 in March and 9.97-19.7 in November) and for An. flavirostris (0.19-5.14 in March and 6.27-15.8 in November). These high values may explain the increased malaria parasite rates obtained from at least two forest communities. Correlation between actual and calculated rates of gametocytaemia was poorest in Kapitangan due to inadequate sampling of the human population. In Banggi island, malaria is stable and holoendemic, and the population enjoys a high degree of immunity.
    Matched MeSH terms: Insect Vectors/parasitology*
  16. Antinori S, Galimberti L, Milazzo L, Corbellino M
    Acta Trop, 2013 Feb;125(2):191-201.
    PMID: 23088834 DOI: 10.1016/j.actatropica.2012.10.008
    Plasmodium knowlesi was initially identified in the 30s as a natural Plasmodium of Macaca fascicularis monkey also capable of experimentally infecting humans. It gained a relative notoriety in the mid-30s as an alternative to Plasmodium vivax in the treatment of the general paralysis of the insane (neurosyphilis). In 1965 the first natural human infection was described in a US military surveyor coming back from the Pahang jungle of the Malaysian peninsula. P. knowlesi was again brought to the attention of the medical community when in 2004, Balbir Singh and his co-workers reported that about 58% of malaria cases observed in the Kapit district of the Malaysian Borneo were actually caused by P. knowlesi. In the following years several reports showed that P. knowlesi is much more widespread than initially thought with cases reported across Southeast Asia. This infection should also be considered in the differential diagnosis of any febrile travellers coming back from a recent travel to forested areas of Southeast Asia. P. knowlesi can cause severe malaria with a rate of 6-9% and with a case fatality rate of 3%. Respiratory distress, acute renal failure, shock and hyperbilirubinemia are the most frequently observed complications of severe P. knowlesi malaria. Chloroquine is considered the treatment of choice of uncomplicated malaria caused by P. knowlesi.
    Matched MeSH terms: Insect Vectors/parasitology*
  17. Kittayapong P, Edman JD, Harrison BA, Delorme DR
    J Med Entomol, 1992 May;29(3):379-83.
    PMID: 1625287
    The relationship among body size (as indicated by wing length), age (as indicated by parity dissections), and malaria infection were observed in host-seeking Anopheles maculatus Theobald females collected in aboriginal villages of peninsular Malaysia. Both ELISA and salivary gland dissections were used to determine malaria infection. The wings of parous females were significantly longer than those of nulliparous females, suggesting that larger females live longer than smaller ones, and thus have a higher vectorial capacity. Body size differences were not detected between infected parous and uninfected parous females. Females infected with only oocysts were significantly larger than females infected with sporozoites. No correlation was found between the number of oocysts or sporozoites and body size in this small sample.
    Matched MeSH terms: Insect Vectors/parasitology
  18. Singh RK, Haq S, Kumar G, Dhiman RC
    J Commun Dis, 2013 Mar-Jun;45(1-2):1-16.
    PMID: 25141549
    Anopheles annularis is widely distributed mosquito species all over the country. An. annularis has been incriminated as a malaria vector in India, Sri Lanka, Bangladesh, Myanmar, Indonesia, Malaysia and China. In India, it has been reported to play an important role in malaria transmission as a secondary vector in certain parts of Assam, West Bengal and U.P. In Odisha and some neighbouring countries such as Sri Lanka, Nepal and Myanmar it has been recognised as a primary vector of malaria. This is a species complex of two sibling species A and B but the role of these sibling species in malaria transmission is not clearly known. An. annularis is resistant to DDT and dieldrin/HCH and susceptible to malathion and synthetic pyrethorides in most of the parts of India. In view of rapid change in ecological conditions, further studies are required on the bionomics of An. annularis and its role in malaria transmission in other parts of the country. Considering the importance of An. annularis as a malaria vector, the bionomics and its role in malaria transmission has been reviewed in this paper. In this communication, an attempt has been made to review its bionomics and its role as malaria vector. An. annularis is a competent vector of malaria, thus, due attention should be paid for its control under the vector control programmes specially in border states where it is playing a primary role in malaria transmission.
    Matched MeSH terms: Insect Vectors/parasitology*
  19. Onah IE, Ubachukwu PO, Eyo JE
    Trop Biomed, 2020 Mar 01;37(1):174-185.
    PMID: 33612728
    The nuisance bites of blackflies and transmission of Onchocerca volvulus, which causes onchocerciasis, constitutes a threat to public health and an impediment to food production in rural and riverine communities in Nigeria. The entomological profile of onchocerciasis at Adani, Nigeria, was investigated from August 2010 to January 2011 to determine the transmission of O. volvulus after 15 years of ivermectin distribution in the area. A total of 548 adult female blackflies of the Simulium damnosum complex were caught using human baits and dissected. Of this number, 248 flies were caught in the wet season (August to October), while 300 flies were caught in the dry season (November to January). The relative abundance of flies at Adani varied from 21 in December to 243 in January. The monthly catches between September and October and between December and January were significantly different. The monthly population density of the flies ranged from 0.5Flies/Man/Hour (FMH) in December to 5.5FMH in January. The diurnal biting pattern of the S. damnosum complex at the site showed a bimodal peak of activity with the evening peak being higher than the morning peak except in October when the morning peak was higher than the evening peak. The morning peaks were observed between 7.00 am and 10.00 am, whereas the evening peaks occurred between 4.00 pm and 6.00 pm. The morning and evening biting peaks in all the months were not significantly different. Nulliparous flies accounted for 75.7% of the total catch, whereas 24.3% of the flies caught were parous. The infection, infective bites and transmission of O. volvulus during the study period were zero. This study suggests that transmission of O. volvulus has been halted and the flies are presently more nuisance biters than disease vectors since no stage of O. volvulus was found in the flies dissected.
    Matched MeSH terms: Insect Vectors/parasitology
  20. Vythilingam I, Phetsouvanh R, Keokenchanh K, Yengmala V, Vanisaveth V, Phompida S, et al.
    Trop Med Int Health, 2003 Jun;8(6):525-35.
    PMID: 12791058
    A longitudinal study was conducted on the prevalence of Anopheles in three malaria endemic villages in Sekong province, in the southern region of Lao PDR, from August 2000 to October 2001. All night, human landing collections took place in August and October 2000 and April and October 2001, and blood smears were taken for malaria parasites during the same period. Mosquitoes were tested for sporozoite antigen using enzyme-linked immunosorbent assay. In August 2000 (wet season) and April 2001 (dry season) the ovaries of the mosquitoes were examined for parity. A total of 16 species of Anopheles were caught in the study sites of which An. dirus A, An. maculatus sl and An. jeyporiensis were positive for sporozoites. The entomological inoculation rate (EIR) ranged from 0.06 to 0.25. There was a good correlation between EIR and vectorial capacity in the wet season, especially in Pai Mai where the prevalence of malaria was also high during the wet seasons (11.8 and 10.53). An. dirus A showed ambivalence in their choice of feeding as approximately 50% attacked man indoors and an equal proportion outdoors. An dirus A was the main vector in Pai Mai. The parous rate did not significantly differ between the wet and dry season, although it was higher in the dry season. In Takaio the parasite prevalence ranged from 8.7% (dry season) to 37.1% (wet season) and An. jeyporiensis was the vector, and the risk of infection was 0.85 in the dry season while 0.99 in the wet season. In Toumgno An. maculatus sl was the vector and infection was found only in August and October 2000. However, malaria prevalence ranged from 9.69 to 20.4% and was equally high in the dry season. Cattle were also present close to the houses in all the villages and this might be a contributory factor in the prevalence of malaria.
    Matched MeSH terms: Insect Vectors/parasitology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links