Displaying publications 1 - 20 of 267 in total

Abstract:
Sort:
  1. Muazu Musa R, P P Abdul Majeed A, Taha Z, Chang SW, Ab Nasir AF, Abdullah MR
    PLoS One, 2019;14(1):e0209638.
    PMID: 30605456 DOI: 10.1371/journal.pone.0209638
    k-nearest neighbour (k-NN) has been shown to be an effective learning algorithm for classification and prediction. However, the application of k-NN for prediction and classification in specific sport is still in its infancy. The present study classified and predicted high and low potential archers from a set of physical fitness variables trained on a variation of k-NN algorithms and logistic regression. 50 youth archers with the mean age and standard deviation of (17.0 ± 0.56) years drawn from various archery programmes completed a one end archery shooting score test. Standard fitness measurements of the handgrip, vertical jump, standing broad jump, static balance, upper muscle strength and the core muscle strength were conducted. Multiple linear regression was utilised to ascertain the significant variables that affect the shooting score. It was demonstrated from the analysis that core muscle strength and vertical jump were statistically significant. Hierarchical agglomerative cluster analysis (HACA) was used to cluster the archers based on the significant variables identified. k-NN model variations, i.e., fine, medium, coarse, cosine, cubic and weighted functions as well as logistic regression, were trained based on the significant performance variables. The HACA clustered the archers into high potential archers (HPA) and low potential archers (LPA). The weighted k-NN outperformed all the tested models at itdemonstrated reasonably good classification on the evaluated indicators with an accuracy of 82.5 ± 4.75% for the prediction of the HPA and the LPA. Moreover, the performance of the classifiers was further investigated against fresh data, which also indicates the efficacy of the weighted k-NN model. These findings could be valuable to coaches and sports managers to recognise high potential archers from a combination of the selected few physical fitness performance indicators identified which would subsequently save cost, time and energy for a talent identification programme.
    Matched MeSH terms: Machine Learning
  2. Seal A, Reddy PPN, Chaithanya P, Meghana A, Jahnavi K, Krejcar O, et al.
    Comput Math Methods Med, 2020;2020:8303465.
    PMID: 32831902 DOI: 10.1155/2020/8303465
    Human emotion recognition has been a major field of research in the last decades owing to its noteworthy academic and industrial applications. However, most of the state-of-the-art methods identified emotions after analyzing facial images. Emotion recognition using electroencephalogram (EEG) signals has got less attention. However, the advantage of using EEG signals is that it can capture real emotion. However, very few EEG signals databases are publicly available for affective computing. In this work, we present a database consisting of EEG signals of 44 volunteers. Twenty-three out of forty-four are females. A 32 channels CLARITY EEG traveler sensor is used to record four emotional states namely, happy, fear, sad, and neutral of subjects by showing 12 videos. So, 3 video files are devoted to each emotion. Participants are mapped with the emotion that they had felt after watching each video. The recorded EEG signals are considered further to classify four types of emotions based on discrete wavelet transform and extreme learning machine (ELM) for reporting the initial benchmark classification performance. The ELM algorithm is used for channel selection followed by subband selection. The proposed method performs the best when features are captured from the gamma subband of the FP1-F7 channel with 94.72% accuracy. The presented database would be available to the researchers for affective recognition applications.
    Matched MeSH terms: Machine Learning
  3. Albahri OS, Al-Obaidi JR, Zaidan AA, Albahri AS, Zaidan BB, Salih MM, et al.
    Comput Methods Programs Biomed, 2020 Nov;196:105617.
    PMID: 32593060 DOI: 10.1016/j.cmpb.2020.105617
    CONTEXT: People who have recently recovered from the threat of deteriorating coronavirus disease-2019 (COVID-19) have antibodies to the coronavirus circulating in their blood. Thus, the transfusion of these antibodies to deteriorating patients could theoretically help boost their immune system. Biologically, two challenges need to be surmounted to allow convalescent plasma (CP) transfusion to rescue the most severe COVID-19 patients. First, convalescent subjects must meet donor selection plasma criteria and comply with national health requirements and known standard routine procedures. Second, multi-criteria decision-making (MCDM) problems should be considered in the selection of the most suitable CP and the prioritisation of patients with COVID-19.

    OBJECTIVE: This paper presents a rescue framework for the transfusion of the best CP to the most critical patients with COVID-19 on the basis of biological requirements by using machine learning and novel MCDM methods.

    METHOD: The proposed framework is illustrated on the basis of two distinct and consecutive phases (i.e. testing and development). In testing, ABO compatibility is assessed after classifying donors into the four blood types, namely, A, B, AB and O, to indicate the suitability and safety of plasma for administration in order to refine the CP tested list repository. The development phase includes patient and donor sides. In the patient side, prioritisation is performed using a contracted patient decision matrix constructed between 'serological/protein biomarkers and the ratio of the partial pressure of oxygen in arterial blood to fractional inspired oxygen criteria' and 'patient list based on novel MCDM method known as subjective and objective decision by opinion score method'. Then, the patients with the most urgent need are classified into the four blood types and matched with a tested CP list from the test phase in the donor side. Thereafter, the prioritisation of CP tested list is performed using the contracted CP decision matrix.

    RESULT: An intelligence-integrated concept is proposed to identify the most appropriate CP for corresponding prioritised patients with COVID-19 to help doctors hasten treatments.

    DISCUSSION: The proposed framework implies the benefits of providing effective care and prevention of the extremely rapidly spreading COVID-19 from affecting patients and the medical sector.

    Matched MeSH terms: Machine Learning
  4. Charoenkwan P, Chotpatiwetchkul W, Lee VS, Nantasenamat C, Shoombuatong W
    Sci Rep, 2021 Dec 10;11(1):23782.
    PMID: 34893688 DOI: 10.1038/s41598-021-03293-w
    Owing to their ability to maintain a thermodynamically stable fold at extremely high temperatures, thermophilic proteins (TTPs) play a critical role in basic research and a variety of applications in the food industry. As a result, the development of computation models for rapidly and accurately identifying novel TTPs from a large number of uncharacterized protein sequences is desirable. In spite of existing computational models that have already been developed for characterizing thermophilic proteins, their performance and interpretability remain unsatisfactory. We present a novel sequence-based thermophilic protein predictor, termed SCMTPP, for improving model predictability and interpretability. First, an up-to-date and high-quality dataset consisting of 1853 TPPs and 3233 non-TPPs was compiled from published literature. Second, the SCMTPP predictor was created by combining the scoring card method (SCM) with estimated propensity scores of g-gap dipeptides. Benchmarking experiments revealed that SCMTPP had a cross-validation accuracy of 0.883, which was comparable to that of a support vector machine-based predictor (0.906-0.910) and 2-17% higher than that of commonly used machine learning models. Furthermore, SCMTPP outperformed the state-of-the-art approach (ThermoPred) on the independent test dataset, with accuracy and MCC of 0.865 and 0.731, respectively. Finally, the SCMTPP-derived propensity scores were used to elucidate the critical physicochemical properties for protein thermostability enhancement. In terms of interpretability and generalizability, comparative results showed that SCMTPP was effective for identifying and characterizing TPPs. We had implemented the proposed predictor as a user-friendly online web server at http://pmlabstack.pythonanywhere.com/SCMTPP in order to allow easy access to the model. SCMTPP is expected to be a powerful tool for facilitating community-wide efforts to identify TPPs on a large scale and guiding experimental characterization of TPPs.
    Matched MeSH terms: Machine Learning
  5. Ravindran S, Jambek AB, Muthusamy H, Neoh SC
    Comput Math Methods Med, 2015;2015:283532.
    PMID: 25793009 DOI: 10.1155/2015/283532
    A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm.
    Matched MeSH terms: Machine Learning
  6. Saw SN, Biswas A, Mattar CNZ, Lee HK, Yap CH
    Prenat Diagn, 2021 Mar;41(4):505-516.
    PMID: 33462877 DOI: 10.1002/pd.5903
    OBJECTIVE: To investigate the performance of the machine learning (ML) model in predicting small-for-gestational-age (SGA) at birth, using second-trimester data.

    METHODS: Retrospective data of 347 patients, consisting of maternal demographics and ultrasound parameters collected between the 20th and 25th gestational weeks, were studied. ML models were applied to different combinations of the parameters to predict SGA and severe SGA at birth (defined as 10th and third centile birth weight).

    RESULTS: Using second-trimester measurements, ML models achieved an accuracy of 70% and 73% in predicting SGA and severe SGA whereas clinical guidelines had accuracies of 64% and 48%. Uterine PI (Ut PI) was found to be an important predictor, corroborating with existing literature, but surprisingly, so was nuchal fold thickness (NF). Logistic regression showed that Ut PI and NF were significant predictors and statistical comparisons showed that these parameters were significantly different in disease. Further, including NF was found to improve ML model performance, and vice versa.

    CONCLUSION: ML could potentially improve the prediction of SGA at birth from second-trimester measurements, and demonstrated reduced NF to be an important predictor. Early prediction of SGA allows closer clinical monitoring, which provides an opportunity to discover any underlying diseases associated with SGA.

    Matched MeSH terms: Machine Learning
  7. Salim NAM, Wah YB, Reeves C, Smith M, Yaacob WFW, Mudin RN, et al.
    Sci Rep, 2021 01 13;11(1):939.
    PMID: 33441678 DOI: 10.1038/s41598-020-79193-2
    Dengue fever is a mosquito-borne disease that affects nearly 3.9 billion people globally. Dengue remains endemic in Malaysia since its outbreak in the 1980's, with its highest concentration of cases in the state of Selangor. Predictors of dengue fever outbreaks could provide timely information for health officials to implement preventative actions. In this study, five districts in Selangor, Malaysia, that demonstrated the highest incidence of dengue fever from 2013 to 2017 were evaluated for the best machine learning model to predict Dengue outbreaks. Climate variables such as temperature, wind speed, humidity and rainfall were used in each model. Based on results, the SVM (linear kernel) exhibited the best prediction performance (Accuracy = 70%, Sensitivity = 14%, Specificity = 95%, Precision = 56%). However, the sensitivity for SVM (linear) for the testing sample increased up to 63.54% compared to 14.4% for imbalanced data (original data). The week-of-the-year was the most important predictor in the SVM model. This study exemplifies that machine learning has respectable potential for the prediction of dengue outbreaks. Future research should consider boosting, or using, nature inspired algorithms to develop a dengue prediction model.
    Matched MeSH terms: Machine Learning
  8. Pogorelov K, Suman S, Azmadi Hussin F, Saeed Malik A, Ostroukhova O, Riegler M, et al.
    J Appl Clin Med Phys, 2019 Aug;20(8):141-154.
    PMID: 31251460 DOI: 10.1002/acm2.12662
    Wireless capsule endoscopy (WCE) is an effective technology that can be used to make a gastrointestinal (GI) tract diagnosis of various lesions and abnormalities. Due to a long time required to pass through the GI tract, the resulting WCE data stream contains a large number of frames which leads to a tedious job for clinical experts to perform a visual check of each and every frame of a complete patient's video footage. In this paper, an automated technique for bleeding detection based on color and texture features is proposed. The approach combines the color information which is an essential feature for initial detection of frame with bleeding. Additionally, it uses the texture which plays an important role to extract more information from the lesion captured in the frames and allows the system to distinguish finely between borderline cases. The detection algorithm utilizes machine-learning-based classification methods, and it can efficiently distinguish between bleeding and nonbleeding frames and perform pixel-level segmentation of bleeding areas in WCE frames. The performed experimental studies demonstrate the performance of the proposed bleeding detection method in terms of detection accuracy, where we are at least as good as the state-of-the-art approaches. In this research, we have conducted a broad comparison of a number of different state-of-the-art features and classification methods that allows building an efficient and flexible WCE video processing system.
    Matched MeSH terms: Machine Learning
  9. Ahmadi H, Gholamzadeh M, Shahmoradi L, Nilashi M, Rashvand P
    Comput Methods Programs Biomed, 2018 Jul;161:145-172.
    PMID: 29852957 DOI: 10.1016/j.cmpb.2018.04.013
    BACKGROUND AND OBJECTIVE: Diagnosis as the initial step of medical practice, is one of the most important parts of complicated clinical decision making which is usually accompanied with the degree of ambiguity and uncertainty. Since uncertainty is the inseparable nature of medicine, fuzzy logic methods have been used as one of the best methods to decrease this ambiguity. Recently, several kinds of literature have been published related to fuzzy logic methods in a wide range of medical aspects in terms of diagnosis. However, in this context there are a few review articles that have been published which belong to almost ten years ago. Hence, we conducted a systematic review to determine the contribution of utilizing fuzzy logic methods in disease diagnosis in different medical practices.

    METHODS: Eight scientific databases are selected as an appropriate database and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method was employed as the basis method for conducting this systematic and meta-analysis review. Regarding the main objective of this research, some inclusion and exclusion criteria were considered to limit our investigation. To achieve a structured meta-analysis, all eligible articles were classified based on authors, publication year, journals or conferences, applied fuzzy methods, main objectives of the research, problems and research gaps, tools utilized to model the fuzzy system, medical disciplines, sample sizes, the inputs and outputs of the system, findings, results and finally the impact of applied fuzzy methods to improve diagnosis. Then, we analyzed the results obtained from these classifications to indicate the effect of fuzzy methods in decreasing the complexity of diagnosis.

    RESULTS: Consequently, the result of this study approved the effectiveness of applying different fuzzy methods in diseases diagnosis process, presenting new insights for researchers about what kind of diseases which have been more focused. This will help to determine the diagnostic aspects of medical disciplines that are being neglected.

    CONCLUSIONS: Overall, this systematic review provides an appropriate platform for further research by identifying the research needs in the domain of disease diagnosis.

    Matched MeSH terms: Machine Learning
  10. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP
    Comput Methods Programs Biomed, 2018 Jul;161:103-113.
    PMID: 29852953 DOI: 10.1016/j.cmpb.2018.04.012
    In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI).
    Matched MeSH terms: Machine Learning
  11. Mujtaba G, Shuib L, Raj RG, Rajandram R, Shaikh K, Al-Garadi MA
    J Biomed Inform, 2018 06;82:88-105.
    PMID: 29738820 DOI: 10.1016/j.jbi.2018.04.013
    Text categorization has been used extensively in recent years to classify plain-text clinical reports. This study employs text categorization techniques for the classification of open narrative forensic autopsy reports. One of the key steps in text classification is document representation. In document representation, a clinical report is transformed into a format that is suitable for classification. The traditional document representation technique for text categorization is the bag-of-words (BoW) technique. In this study, the traditional BoW technique is ineffective in classifying forensic autopsy reports because it merely extracts frequent but discriminative features from clinical reports. Moreover, this technique fails to capture word inversion, as well as word-level synonymy and polysemy, when classifying autopsy reports. Hence, the BoW technique suffers from low accuracy and low robustness unless it is improved with contextual and application-specific information. To overcome the aforementioned limitations of the BoW technique, this research aims to develop an effective conceptual graph-based document representation (CGDR) technique to classify 1500 forensic autopsy reports from four (4) manners of death (MoD) and sixteen (16) causes of death (CoD). Term-based and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) based conceptual features were extracted and represented through graphs. These features were then used to train a two-level text classifier. The first level classifier was responsible for predicting MoD. In addition, the second level classifier was responsible for predicting CoD using the proposed conceptual graph-based document representation technique. To demonstrate the significance of the proposed technique, its results were compared with those of six (6) state-of-the-art document representation techniques. Lastly, this study compared the effects of one-level classification and two-level classification on the experimental results. The experimental results indicated that the CGDR technique achieved 12% to 15% improvement in accuracy compared with fully automated document representation baseline techniques. Moreover, two-level classification obtained better results compared with one-level classification. The promising results of the proposed conceptual graph-based document representation technique suggest that pathologists can adopt the proposed system as their basis for second opinion, thereby supporting them in effectively determining CoD.
    Matched MeSH terms: Machine Learning
  12. Mumtaz W, Malik AS
    Brain Topogr, 2018 09;31(5):875-885.
    PMID: 29860588 DOI: 10.1007/s10548-018-0651-x
    The choice of an electroencephalogram (EEG) reference has fundamental importance and could be critical during clinical decision-making because an impure EEG reference could falsify the clinical measurements and subsequent inferences. In this research, the suitability of three EEG references was compared while classifying depressed and healthy brains using a machine-learning (ML)-based validation method. In this research, the EEG data of 30 unipolar depressed subjects and 30 age-matched healthy controls were recorded. The EEG data were analyzed in three different EEG references, the link-ear reference (LE), average reference (AR), and reference electrode standardization technique (REST). The EEG-based functional connectivity (FC) was computed. Also, the graph-based measures, such as the distances between nodes, minimum spanning tree, and maximum flow between the nodes for each channel pair, were calculated. An ML scheme provided a mechanism to compare the performances of the extracted features that involved a general framework such as the feature extraction (graph-based theoretic measures), feature selection, classification, and validation. For comparison purposes, the performance metrics such as the classification accuracies, sensitivities, specificities, and F scores were computed. When comparing the three references, the diagnostic accuracy showed better performances during the REST, while the LE and AR showed less discrimination between the two groups. Based on the results, it can be concluded that the choice of appropriate reference is critical during the clinical scenario. The REST reference is recommended for future applications of EEG-based diagnosis of mental illnesses.
    Matched MeSH terms: Machine Learning
  13. Bhat S, Acharya UR, Hagiwara Y, Dadmehr N, Adeli H
    Comput Biol Med, 2018 11 01;102:234-241.
    PMID: 30253869 DOI: 10.1016/j.compbiomed.2018.09.008
    Parkinson's disease (PD) is a neurodegenerative disease of the central nervous system caused due to the loss of dopaminergic neurons. It is classified under movement disorder as patients with PD present with tremor, rigidity, postural changes, and a decrease in spontaneous movements. Comorbidities including anxiety, depression, fatigue, and sleep disorders are observed prior to the diagnosis of PD. Gene mutations, exposure to toxic substances, and aging are considered as the causative factors of PD even though its genesis is unknown. This paper reviews PD etiologies, progression, and in particular measurable indicators of PD such as neuroimaging and electrophysiology modalities. In addition to gene therapy, neuroprotective, pharmacological, and neural transplantation treatments, researchers are actively aiming at identifying biological markers of PD with the goal of early diagnosis. Neuroimaging modalities used together with advanced machine learning techniques offer a promising path for the early detection and intervention in PD patients.
    Matched MeSH terms: Machine Learning
  14. Hatmal MM, Alshaer W, Mahmoud IS, Al-Hatamleh MAI, Al-Ameer HJ, Abuyaman O, et al.
    PLoS One, 2021;16(10):e0257857.
    PMID: 34648514 DOI: 10.1371/journal.pone.0257857
    CD36 (cluster of differentiation 36) is a membrane protein involved in lipid metabolism and has been linked to pathological conditions associated with metabolic disorders, such as diabetes and dyslipidemia. A case-control study was conducted and included 177 patients with type-2 diabetes mellitus (T2DM) and 173 control subjects to study the involvement of CD36 gene rs1761667 (G>A) and rs1527483 (C>T) polymorphisms in the pathogenesis of T2DM and dyslipidemia among Jordanian population. Lipid profile, blood sugar, gender and age were measured and recorded. Also, genotyping analysis for both polymorphisms was performed. Following statistical analysis, 10 different neural networks and machine learning (ML) tools were used to predict subjects with diabetes or dyslipidemia. Towards further understanding of the role of CD36 protein and gene in T2DM and dyslipidemia, a protein-protein interaction network and meta-analysis were carried out. For both polymorphisms, the genotypic frequencies were not significantly different between the two groups (p > 0.05). On the other hand, some ML tools like multilayer perceptron gave high prediction accuracy (≥ 0.75) and Cohen's kappa (κ) (≥ 0.5). Interestingly, in K-star tool, the accuracy and Cohen's κ values were enhanced by including the genotyping results as inputs (0.73 and 0.46, respectively, compared to 0.67 and 0.34 without including them). This study confirmed, for the first time, that there is no association between CD36 polymorphisms and T2DM or dyslipidemia among Jordanian population. Prediction of T2DM and dyslipidemia, using these extensive ML tools and based on such input data, is a promising approach for developing diagnostic and prognostic prediction models for a wide spectrum of diseases, especially based on large medical databases.
    Matched MeSH terms: Machine Learning
  15. Prime SS, Cirillo N, Cheong SC, Prime MS, Parkinson EK
    Cancer Lett, 2021 10 10;518:102-114.
    PMID: 34139286 DOI: 10.1016/j.canlet.2021.05.025
    This study reviews the molecular landscape of oral potentially malignant disorders (OPMD). We examine the impact of tumour heterogeneity, the spectrum of driver mutations (TP53, CDKN2A, TERT, NOTCH1, AJUBA, PIK3CA, CASP8) and gene transcription on tumour progression. We comment on how some of these mutations impact cellular senescence, field cancerization and cancer stem cells. We propose that OPMD can be monitored more closely and more dynamically through the use of liquid biopsies using an appropriate biomarker of transformation. We describe new gene interactions through the use of a systems biology approach and we highlight some of the first studies to identify functional genes using CRISPR-Cas9 technology. We believe that this information has translational implications for the use of re-purposed existing drugs and/or new drug development. Further, we argue that the use of digital technology encompassing clinical and laboratory-based data will create relevant datasets for machine learning/artificial intelligence. We believe that therapeutic intervention at an early molecular premalignant stage should be an important preventative strategy to inhibit the development of oral squamous cell carcinoma and that this approach is applicable to other aerodigestive tract cancers.
    Matched MeSH terms: Machine Learning
  16. Oung QW, Muthusamy H, Basah SN, Lee H, Vijean V
    J Med Syst, 2017 Dec 29;42(2):29.
    PMID: 29288342 DOI: 10.1007/s10916-017-0877-2
    Parkinson's disease (PD) is a type of progressive neurodegenerative disorder that has affected a large part of the population till now. Several symptoms of PD include tremor, rigidity, slowness of movements and vocal impairments. In order to develop an effective diagnostic system, a number of algorithms were proposed mainly to distinguish healthy individuals from the ones with PD. However, most of the previous works were conducted based on a binary classification, with the early PD stage and the advanced ones being treated equally. Therefore, in this work, we propose a multiclass classification with three classes of PD severity level (mild, moderate, severe) and healthy control. The focus is to detect and classify PD using signals from wearable motion and audio sensors based on both empirical wavelet transform (EWT) and empirical wavelet packet transform (EWPT) respectively. The EWT/EWPT was applied to decompose both speech and motion data signals up to five levels. Next, several features are extracted after obtaining the instantaneous amplitudes and frequencies from the coefficients of the decomposed signals by applying the Hilbert transform. The performance of the algorithm was analysed using three classifiers - K-nearest neighbour (KNN), probabilistic neural network (PNN) and extreme learning machine (ELM). Experimental results demonstrated that our proposed approach had the ability to differentiate PD from non-PD subjects, including their severity level - with classification accuracies of more than 90% using EWT/EWPT-ELM based on signals from motion and audio sensors respectively. Additionally, classification accuracy of more than 95% was achieved when EWT/EWPT-ELM is applied to signals from integration of both signal's information.
    Matched MeSH terms: Machine Learning
  17. Hariharan M, Sindhu R, Vijean V, Yazid H, Nadarajaw T, Yaacob S, et al.
    Comput Methods Programs Biomed, 2018 Mar;155:39-51.
    PMID: 29512503 DOI: 10.1016/j.cmpb.2017.11.021
    BACKGROUND AND OBJECTIVE: Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. In this work, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals.

    METHODS: Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) and 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) and 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 features), Linear Predictive Coding (LPC) based cepstral features (56 features), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 features). The combined feature set consists of 568 features. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Finally, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well.

    RESULTS: Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%.

    CONCLUSION: The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals.

    Matched MeSH terms: Machine Learning
  18. Ng GYL, Tan SC, Ong CS
    PLoS One, 2023;18(10):e0292961.
    PMID: 37856458 DOI: 10.1371/journal.pone.0292961
    Cell type identification is one of the fundamental tasks in single-cell RNA sequencing (scRNA-seq) studies. It is a key step to facilitate downstream interpretations such as differential expression, trajectory inference, etc. scRNA-seq data contains technical variations that could affect the interpretation of the cell types. Therefore, gene selection, also known as feature selection in data science, plays an important role in selecting informative genes for scRNA-seq cell type identification. Generally speaking, feature selection methods are categorized into filter-, wrapper-, and embedded-based approaches. From the existing literature, methods from filter- and embedded-based approaches are widely applied in scRNA-seq gene selection tasks. The wrapper-based method that gives promising results in other fields has yet been extensively utilized for selecting gene features from scRNA-seq data; in addition, most of the existing wrapper methods used in this field are clustering instead of classification-based. With a large number of annotated data available today, this study applied a classification-based approach as an alternative to the clustering-based wrapper method. In our work, a quantum-inspired differential evolution (QDE) wrapped with a classification method was introduced to select a subset of genes from twelve well-known scRNA-seq transcriptomic datasets to identify cell types. In particular, the QDE was combined with different machine-learning (ML) classifiers namely logistic regression, decision tree, support vector machine (SVM) with linear and radial basis function kernels, as well as extreme learning machine. The linear SVM wrapped with QDE, namely QDE-SVM, was chosen by referring to the feature selection results from the experiment. QDE-SVM showed a superior cell type classification performance among QDE wrapping with other ML classifiers as well as the recent wrapper methods (i.e., FSCAM, SSD-LAHC, MA-HS, and BSF). QDE-SVM achieved an average accuracy of 0.9559, while the other wrapper methods achieved average accuracies in the range of 0.8292 to 0.8872.
    Matched MeSH terms: Machine Learning
  19. Charoenkwan P, Chiangjong W, Lee VS, Nantasenamat C, Hasan MM, Shoombuatong W
    Sci Rep, 2021 Feb 04;11(1):3017.
    PMID: 33542286 DOI: 10.1038/s41598-021-82513-9
    As anticancer peptides (ACPs) have attracted great interest for cancer treatment, several approaches based on machine learning have been proposed for ACP identification. Although existing methods have afforded high prediction accuracies, however such models are using a large number of descriptors together with complex ensemble approaches that consequently leads to low interpretability and thus poses a challenge for biologists and biochemists. Therefore, it is desirable to develop a simple, interpretable and efficient predictor for accurate ACP identification as well as providing the means for the rational design of new anticancer peptides with promising potential for clinical application. Herein, we propose a novel flexible scoring card method (FSCM) making use of propensity scores of local and global sequential information for the development of a sequence-based ACP predictor (named iACP-FSCM) for improving the prediction accuracy and model interpretability. To the best of our knowledge, iACP-FSCM represents the first sequence-based ACP predictor for rationalizing an in-depth understanding into the molecular basis for the enhancement of anticancer activities of peptides via the use of FSCM-derived propensity scores. The independent testing results showed that the iACP-FSCM provided accuracies of 0.825 and 0.910 as evaluated on the main and alternative datasets, respectively. Results from comparative benchmarking demonstrated that iACP-FSCM could outperform seven other existing ACP predictors with marked improvements of 7% and 17% for accuracy and MCC, respectively, on the main dataset. Furthermore, the iACP-FSCM (0.910) achieved very comparable results to that of the state-of-the-art ensemble model AntiCP2.0 (0.920) as evaluated on the alternative dataset. Comparative results demonstrated that iACP-FSCM was the most suitable choice for ACP identification and characterization considering its simplicity, interpretability and generalizability. It is highly anticipated that the iACP-FSCM may be a robust tool for the rapid screening and identification of promising ACPs for clinical use.
    Matched MeSH terms: Machine Learning
  20. Yahya N, Ebert MA, Bulsara M, House MJ, Kennedy A, Joseph DJ, et al.
    Med Phys, 2016 May;43(5):2040.
    PMID: 27147316 DOI: 10.1118/1.4944738
    Given the paucity of available data concerning radiotherapy-induced urinary toxicity, it is important to ensure derivation of the most robust models with superior predictive performance. This work explores multiple statistical-learning strategies for prediction of urinary symptoms following external beam radiotherapy of the prostate.
    Matched MeSH terms: Machine Learning*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links