Displaying all 7 publications

Abstract:
Sort:
  1. Sinniah D
    Intern Med J, 2015 Apr;45(4):467-8.
    PMID: 25827521 DOI: 10.1111/imj.12715
    Matched MeSH terms: Magnesium Deficiency/blood; Magnesium Deficiency/complications*; Magnesium Deficiency/diagnosis*
  2. Agarwal R, Iezhitsa IN, Agarwal P, Spasov AA
    Magnes Res, 2013 Jan-Feb;26(1):2-8.
    PMID: 23708888 DOI: 10.1684/mrh.2013.0336
    Senile cataract is the most common cause of bilateral blindness and results from the loss of transparency of the lens. Maintenance of the unique tissue architecture of the lens is vital for keeping the lens transparent. Membrane transport mechanisms utilizing several magnesium (Mg)-dependent ATPases, play an important role in maintaining lens homeostasis. Therefore, in Mg-deficiency states, ATPase dysfunctions lead to intracellular depletion of K(+) and accumulation of Na(+) and Ca(2+). High intracellular Ca(2+) causes activation of the enzyme calpain II, which leads to the denaturation of crystallin, the soluble lens protein required for maintaining the transparency of the lens. Mg deficiency also interferes with ATPase functions by causing cellular ATP depletion. Furthermore, Mg deficiency enhances lenticular oxidative stress by increased production of free radicals and depletion of antioxidant defenses. Therefore, Mg supplementation may be of therapeutic value in preventing the onset and progression of cataracts in conditions associated with Mg deficiency.
    Matched MeSH terms: Magnesium Deficiency/complications*; Magnesium Deficiency/pathology
  3. Agarwal R, Iezhitsa I, Agarwal P, Spasov A
    Exp Eye Res, 2012 Aug;101:82-9.
    PMID: 22668657 DOI: 10.1016/j.exer.2012.05.008
    Magnesium is one of the most important regulatory cation involved in several biological processes. It is important for maintaining the structural and functional integrity of vital ocular tissues such as lens. Presence of high magnesium content especially in the peripheral part of lens as compared to aqueous and vitreous humor has been observed. Magnesium plays significant role as a cofactor for more than 350 enzymes in the body especially those utilizing ATP. Membrane associated ATPase functions that are crucial in regulating the intracellular ionic environment, are magnesium-dependent. Moreover, the enzymes involved in ATP production and hydrolysis are also magnesium-dependent. Magnesium deficiency by interfering with ATPase functions causes increased intracellular calcium and sodium and decreases intracellular potassium concentration. Furthermore, magnesium deficiency is associated with increased oxidative stress secondary to increased expression of inducible nitric oxide synthase and increased production of nitric oxide. Thus the alterations in lenticular redox status and ionic imbalances form the basis of the association of magnesium deficiency with cataract. In this paper we review the mechanisms involved in magnesium homeostasis and the role of magnesium deficiency in the pathogenesis of cataract.
    Matched MeSH terms: Magnesium Deficiency/physiopathology*
  4. Zheltova AA, Kharitonova MV, Iezhitsa IN, Serebryansky EP, Evsyukov OY, Spasov AA, et al.
    J Trace Elem Med Biol, 2017 Jan;39:36-42.
    PMID: 27908421 DOI: 10.1016/j.jtemb.2016.07.002
    The aim of the present study was to assess whether dietary magnesium deficiency can alter distribution of macroelements and trace elements in different organs and tissues. Experiments were carried out on 12 adult female Wistar rats, which were fed either a diet with low Mg content (≤20mgkg(-1) of diet) (LMgD) or a diet with daily recommended Mg content (≈500mgkg(-1)) as control group (CG) for 70 days. On the 70th day of the experiment heart, aorta, femoral skeletal muscle, forebrain, cerebellum, pituitary gland, thyroid gland, ovaries, uterus, liver, kidneys, and spleen were taken for analysis of mineral content. Concentrations of Fe and Ca were measured by inductively coupled plasma-atomic emission spectrometry, and levels of Na, K, Mg, Co, Cu, Zn, Ni, Se, I were determined by inductively coupled plasma mass spectrometry. On the 70th day, LMgD led to significant reduction of Mg level in red blood cells, plasma, aorta, uterus and thyroid gland compared to CG as well as resulted in significant decrease of Mg/Ca ratio in kidneys, spleen and ovaries. Contrary to this, an increase of Mg/Ca ratio was found in cerebellum of LMgD group. Significant decrease of K concentration was shown in aorta of LMgD animals compared to CG whereas myocardial K concentration was increased in LMgD group. Na level was two-fold higher in skeletal muscles of rats that received LMgD in comparison to CG (p=0.006). Increased concentrations of Fe in ovaries and uterus were found in LMgD. Mg restriction did not affect Zn concentration in any of tasted tissues. Se level was higher in spleen and lower in uterus of LMgD animals compared to CG. MgD was accompanied by increased level of Co in skeletal muscles and decreased its level in kidneys and uterus. LMgD feeding was associated with decreased concentrations of Ni in heart, thyroid gland, spleen, uterus and Co in heart, aorta, liver, kidneys, spleen and ovaries. The changes of Mg, K, Co content were accompanied by dramatic (10-fold) decrease of I concentration in aorta of LMgD animals. LMgD causes decrease of I content in ovaries and increase of I level in uterus vs CG. Thus, distribution of macroelements (Ca, Na, K) was weakly affected by Mg restriction that led to the most evident alterations of Co and Ni tissue levels. Moreover, mineral balance of uterus seems to be the most susceptible to low Mg intake. Hypomagnesaemia resulted in significant changes of 5 studied trace elements (Fe, Se, Cu, Ni and Co).
    Matched MeSH terms: Magnesium Deficiency/blood; Magnesium Deficiency/metabolism*
  5. Kharitonova M, Iezhitsa I, Zheltova A, Ozerov A, Spasov A, Skalny A
    J Trace Elem Med Biol, 2015 Jan;29:227-34.
    PMID: 25127069 DOI: 10.1016/j.jtemb.2014.06.026
    Magnesium (Mg) deficiency is implicated in the development of numerous disorders of the cardiovascular system. Moreover, the data regarding the efficacy of different magnesium compounds in the correction of impaired functions due to low magnesium intake are often fragmentary and inconsistent. The aim of this study was to compare the effects of the most bioavailable Mg compounds (Mg l-aspartate, Mg N-acetyltaurate, Mg chloride, Mg sulphate and Mg oxybutyrate) on systemic inflammation and endothelial dysfunction in rats fed a low Mg diet for 74 days. A low Mg diet decreased the Mg concentration in the plasma and erythrocytes, which was accompanied by a reduced concentration of eNOs and increased levels of endothelin-1 level in the serum and impaired endothelium-dependent vasodilatation. These effects increased the concentration of proinflammatory molecules, such as VCAM-1, TNF-α, IL-6 and CRP, indicating the development of systemic inflammation and endothelial dysfunction. The increased total NO level, which estimated from the sum of the nitrate and nitrite concentrations in the serum, may also be considered to be a proinflammatory marker. Two weeks of Mg supplementation partially or fully normalised the ability of the vascular wall to effect adequate endothelium-dependent vasodilatation and reversed the levels of most endothelial dysfunction and inflammatory markers (except CRP) to the mean values of the control group. Mg sulphate had the smallest effect on the endothelin-1, TNF-α and VCAM-1 levels. Mg N-acetyltaurate was significantly more effective in restoring the level of eNOS compared to all other studied compounds, except for Mg oxybutyrate. Taken together, the present findings demonstrate that all Mg compounds equally alleviate endothelial dysfunction and inflammation caused by Mg deficiency. Mg sulphate tended to be the least effective compound.
    Matched MeSH terms: Magnesium Deficiency/pathology; Magnesium Deficiency/physiopathology
  6. Tai YT, Tong CV
    J ASEAN Fed Endocr Soc, 2020;35(1):109-113.
    PMID: 33442177 DOI: 10.15605/jafes.035.01.18
    Proton pump inhibitors (PPIs) are the mainstay of therapy for all gastric acid related diseases and are commonly used in current clinical practice. Although widely regarded as safe, PPIs have been associated with a variety of adverse effects, including hypomagnesaemia. The postulated mechanism of PPI-related hypomagnesaemia involves inhibition of intestinal magnesium absorption via transient receptor potential melastin (TRPM) 6 and 7 cation channels. PPIinduced hypomagnesaemia (PPIH) has become a well recognized phenomenon since it was first reported in 2006. Clinical concerns arise from growing number of case reports presenting PPIH as a consequence of long-term PPI use, with more than 30 cases published to date. In this article, we report 2 cases of PPIH associated with the use of pantoprazole. Both patients presented with severe hypomagnesaemia and hypocalcaemia. One of them had associated hypokalemia and cardiac arrhythmia. A casual relation with PPIs postulated and supported by resolution of electrolyte abnormalities after discontinuation of PPIs.
    Matched MeSH terms: Magnesium Deficiency
  7. Sein HH, Whye Lian C, Juan Loong K, Sl Ng J, Rahardjai A, Sultan MA
    Malays J Med Sci, 2014 Sep-Oct;21(5):30-6.
    PMID: 25977631 MyJurnal
    BACKGROUND: This study aimed to determine the intracellular (red blood cell (RBC)) magnesium levels in children with chronic bronchial asthma and to determine the relationship between the magnesium level and peak expiratory flow rate (PEFR), type of asthma treatment, and level of asthma control.
    METHODS: A cross-sectional study was conducted at the Paediatric Clinic, Sarawak General Hospital. A total of 100 children, aged 6-12 years with chronic bronchial asthma, were recruited according to the study criteria. Venous blood samples were obtained to measure the intracellular (RBC) magnesium level using the GBC Avanta Flame Atomic Absorption Spectrophotometer.
    RESULTS: Mean age was 8.57 (SD 1.18) years, and 63% of the participants were male. Mean duration of asthma was 62.2 (SD 32.3) months. A normal intracellular magnesium level was found in 95% of the participants, with a mean of 2.27 (SD 0.33) mmol/L. Two-thirds of the participants had a normal peak flow expiratory rate (> 80% of predicted value). About 85% were using both reliever and controller. Almost half of the participants (49%) had chronic asthma that was well-controlled. No significant relationship was found between magnesium level and age (r = -0.089, P = 0.379), gender (t = 0.64, P = 0.52), duration of asthma (r = -0.03, P = 0.74), PEFR (t = 0.41, P = 0.68), current level of asthma control (t = 0.02, P = 0.97), and current treatment (t = 0.414, P = 0.680).
    CONCLUSION: There was no significant intracellular magnesium deficiency in children with chronic bronchial asthma. There was no significant relationship between therapeutic medications used for treatment of children with chronic asthma and intracellular magnesium levels.
    KEYWORDS: asthma; intracellular; magnesium
    Study site: Paediatric Clinic, Sarawak General Hospital, Sarawak, Malaysia
    Matched MeSH terms: Magnesium Deficiency
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links