Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Bamaga OA, Mahdy MA, Lim YA
    Acta Trop, 2015 Sep;149:59-63.
    PMID: 26001972 DOI: 10.1016/j.actatropica.2015.05.013
    Malaria is still a major public health problem in Yemen. More than 95% of the malaria cases are due to Plasmodium ‎falciparum‎. Recently in Yemen, the antimalarial treatment policy was changed from chloroquine (CQ) to artemisinin combination therapy (ACTs). However, CQ is still available and prescribed in the Yemeni market. The persistence of CQ resistance will be prolonged if the shift to ACT and the simultaneous withdrawal of CQ are not rigorously implemented. The aim of the current survey is to detect chloroquine-resistant mutations in P. falciparum chloroquine-resistance transporter (pfcrt) and P. falciparum multi-drug resistance-1 (pfmdr1) genes. These data will be important for future monitoring and assessment of antimalarial drug policy in Yemen. Blood specimens were collected from 735 individuals from different districts of the Hadhramout province, Yemen by house-to-house visit. Mutation-specific nested polymerase chain reaction (PCR) and restriction fragment length polymorphism (PCR-RFLP) methods were used to investigate the mutations in the pfmdr1(codons 86 and 1246) and pfcrt (codons 76, 271, 326, 356 and 371) genes. The overall prevalence of pfcrt mutations at codons 76, 271, 326 and 371 were 50.4%, 58.7%, 54.3% and 44.9%, respectively. All isolates had wild-type pfcrt 356 allele. The majority of pfmdr1 86 alleles (83.3%) and all pfmdr1 1246 alleles were wild type. There was no association between pfcrt mutations and symptomatology, gender and age groups. In conclusion, point mutations in codons 76, 271, 326 and 371 of pfcrt of P. falciparum are high suggesting a sustained high CQ resistance even after 4 years of shifting to ACTs. These findings warrant complete withdrawal of CQ use from the Yemeni market for P. falciparum and careful usage of CQ for treating Plasmodium vivax.
    Matched MeSH terms: Malaria, Falciparum/parasitology*
  2. Hoon AH, Lam CK, Wah MJ
    Antimicrob Agents Chemother, 1995 Mar;39(3):626-8.
    PMID: 7793863
    Malaysian, TGR (Thailand), and Gambian (West African) Plasmodium falciparum isolates were cultured in vitro by the candle jar method and were characterized for their susceptibilities to present antimalarial drugs by the modified in vitro microtechnique. Results showed that 93 and 47% of the Malaysian isolates were resistant at 50% inhibitory concentrations of 0.1415 to 0.7737 and 0.1025 to 0.1975 microM, respectively, while the rest were susceptible to choloroquine and cycloguanil at 0.0376 and 0.0306 to 0.0954 microM, respectively. All isolates were susceptible to mefloquine, quinine, and pyrimethamine at 0.0026 to 0.0172, 0.0062 to 0.0854, and 0.0149 to 0.0663 microM, respectively. In contrast, the Gambian isolate was susceptible to multiple drugs at 0.0024 to 0.0282 microM; TGR was resistant to chloroquine at 0.8147 microM but was susceptible to mefloquine, quinine, cycloguanil, and pyrimethamine at 0.0024, 0.0096, 0.0143, and 0.0495 microM, respectively.
    Matched MeSH terms: Malaria, Falciparum/parasitology
  3. Mussa A, Talib M, Mohamed Z, Hajissa K
    BMC Res Notes, 2019 Jun 11;12(1):334.
    PMID: 31186056 DOI: 10.1186/s13104-019-4361-6
    OBJECTIVE: Rapid diagnostic tests (RDTs) play a crucial role in the management and control of malaria infection. The histidine-rich protein 2 (PfHRP-2) based RDTs are the most commonly used RDTs for malaria diagnosis in Sudan. Deletion of pfhrp2 in Plasmodium falciparum genome affect the accuracy of PfHRP-2 based RDT kits. This study aimed to identify molecular variation of pfhrp2 among suspected malaria patients from different clinics in Omdurman, Sudan.

    RESULTS: A noticeable variation between the RDT (Alltest Biotech, China) and nPCR results was observed, for RDT 78% (46/59) were P. falciparum positive, 6.8% (4/59) were co-infected with both P. falciparum and Plasmodium vivax, 15.3% (9/59) were negative by the RDT. However, when the nPCR was applied only 44.1% (26/59) and 55.9% (33/59) was P. falciparum positive and negative respectively. The pfhrp2 was further amplified form all nPCR positive samples. Only 17 DNA samples were positive from the 26 positive P. falciparum, interestingly, variation in band sizes was observed and further confirmed by DNA sequencing, and sequencing analysis revealed a high-level of genetic diversity of the pfhrp2 gene in the parasite population from the study area. However, despite extreme sequence variation, diversity of PfHRP2 does not appear to affect RDT performance.

    Matched MeSH terms: Malaria, Falciparum/parasitology
  4. Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, et al.
    Clin Infect Dis, 2009 Sep 15;49(6):852-60.
    PMID: 19635025 DOI: 10.1086/605439
    BACKGROUND: Plasmodium knowlesi is increasingly recognized as a cause of human malaria in Southeast Asia but there are no detailed prospective clinical studies of naturally acquired infections.

    METHODS: In a systematic study of the presentation and course of patients with acute P. knowlesi infection, clinical and laboratory data were collected from previously untreated, nonpregnant adults admitted to the hospital with polymerase chain reaction-confirmed acute malaria at Kapit Hospital (Sarawak, Malaysia) from July 2006 through February 2008.

    RESULTS: Of 152 patients recruited, 107 (70%) had P. knowlesi infection, 24 (16%) had Plasmodium falciparum infection, and 21 (14%) had Plasmodium vivax. Patients with P. knowlesi infection presented with a nonspecific febrile illness, had a baseline median parasitemia value at hospital admission of 1387 parasites/microL (interquartile range, 6-222,570 parasites/microL), and all were thrombocytopenic at hospital admission or on the following day. Most (93.5%) of the patients with P. knowlesi infection had uncomplicated malaria that responded to chloroquine and primaquine treatment. Based on World Health Organization criteria for falciparum malaria, 7 patients with P. knowlesi infection (6.5%) had severe infections at hospital admission. The most frequent complication was respiratory distress, which was present at hospital admission in 4 patients and developed after admission in an additional 3 patients. P. knowlesi parasitemia at hospital admission was an independent determinant of respiratory distress, as were serum creatinine level, serum bilirubin, and platelet count at admission (p < .002 for each). Two patients with knowlesi malaria died, representing a case fatality rate of 1.8% (95% confidence interval, 0.2%-6.6%).

    CONCLUSIONS: Knowlesi malaria causes a wide spectrum of disease. Most cases are uncomplicated and respond promptly to treatment, but approximately 1 in 10 patients develop potentially fatal complications.

    Matched MeSH terms: Malaria, Falciparum/parasitology
  5. Barber BE, Grigg MJ, Piera KA, William T, Cooper DJ, Plewes K, et al.
    Emerg Microbes Infect, 2018 Jun 06;7(1):106.
    PMID: 29872039 DOI: 10.1038/s41426-018-0105-2
    Plasmodium knowlesi occurs throughout Southeast Asia, and is the most common cause of human malaria in Malaysia. Severe disease in humans is characterised by high parasite biomass, reduced red blood cell deformability, endothelial activation and microvascular dysfunction. However, the roles of intravascular haemolysis and nitric oxide (NO)-dependent endothelial dysfunction, important features of severe falciparum malaria, have not been evaluated, nor their role in acute kidney injury (AKI). In hospitalised Malaysian adults with severe (n = 48) and non-severe (n = 154) knowlesi malaria, and in healthy controls (n = 50), we measured cell-free haemoglobin (CFHb) and assessed associations with the endothelial Weibel-Palade body (WPB) constituents, angiopoietin-2 and osteoprotegerin, endothelial and microvascular function, and other markers of disease severity. CFHb was increased in knowlesi malaria in proportion to disease severity, and to a greater extent than previously reported in severe falciparum malaria patients from the same study cohort. In knowlesi malaria, CFHb was associated with parasitaemia, and independently associated with angiopoietin-2 and osteoprotegerin. As with angiopoietin-2, osteoprotegerin was increased in proportion to disease severity, and independently associated with severity markers including creatinine, lactate, interleukin-6, endothelial cell adhesion molecules ICAM-1 and E-selectin, and impaired microvascular reactivity. Osteoprotegerin was also independently associated with NO-dependent endothelial dysfunction. AKI was found in 88% of those with severe knowlesi malaria. Angiopoietin-2 and osteoprotegerin were both independent risk factors for acute kidney injury. Our findings suggest that haemolysis-mediated endothelial activation and release of WPB constituents is likely a key contributor to end-organ dysfunction, including AKI, in severe knowlesi malaria.
    Matched MeSH terms: Malaria, Falciparum/parasitology
  6. Othman AS, Marin-Mogollon C, Salman AM, Franke-Fayard BM, Janse CJ, Khan SM
    Expert Rev Vaccines, 2017 Jul;16(7):1-13.
    PMID: 28525963 DOI: 10.1080/14760584.2017.1333426
    INTRODUCTION: Transgenic malaria parasites expressing foreign genes, for example fluorescent and luminescent proteins, are used extensively to interrogate parasite biology and host-parasite interactions associated with malaria pathology. Increasingly transgenic parasites are also exploited to advance malaria vaccine development. Areas covered: We review how transgenic malaria parasites are used, in vitro and in vivo, to determine protective efficacy of different antigens and vaccination strategies and to determine immunological correlates of protection. We describe how chimeric rodent parasites expressing P. falciparum or P. vivax antigens are being used to directly evaluate and rank order human malaria vaccines before their advancement to clinical testing. In addition, we describe how transgenic human and rodent parasites are used to develop and evaluate live (genetically) attenuated vaccines. Expert commentary: Transgenic rodent and human malaria parasites are being used to both identify vaccine candidate antigens and to evaluate both sub-unit and whole organism vaccines before they are advanced into clinical testing. Transgenic parasites combined with in vivo pre-clinical testing models (e.g. mice) are used to evaluate vaccine safety, potency and the durability of protection as well as to uncover critical protective immune responses and to refine vaccination strategies.
    Matched MeSH terms: Malaria, Falciparum/parasitology
  7. Al-Hamidhi S, Mahdy MA, Idris MA, Bin Dajem SM, Al-Sheikh AA, Al-Qahtani A, et al.
    Infect Genet Evol, 2014 Oct;27:25-31.
    PMID: 24981966 DOI: 10.1016/j.meegid.2014.06.015
    In the Arabian Peninsula malaria control is progressing steadily, backed by adequate logistic and political support. As a result, transmission has been interrupted throughout the region, with exception of limited sites in Yemen and Saudi Arabia. Here we examined Plasmodium falciparum parasites in these sites to assess if the above success has limited diversity and gene flow.
    Matched MeSH terms: Malaria, Falciparum/parasitology*
  8. Seethamchai S, Buppan P, Kuamsab N, Teeranaipong P, Putaporntip C, Jongwutiwes S
    Infect Genet Evol, 2018 11;65:35-42.
    PMID: 30016713 DOI: 10.1016/j.meegid.2018.07.015
    The amino acid substitution at residue 76 of the food vacuolar transmembrane protein encoded by the chloroquine resistance transporter gene of Plasmodium falciparum (Pfcrt) is an important, albeit imperfect, determinant of chloroquine susceptibility status of the parasite. Other mutations in Pfcrt can modulate susceptibility of P. falciparum to other antimalarials capable of interfering with heme detoxification process, and may exert compensatory effect on parasite growth rate. To address whether nationwide implementation of artemisinin combination therapy (ACT) in Thailand could affect sequence variation in exon 2 and introns of Pfcrt, we analyzed 136 P. falciparum isolates collected during 1997 and 2016 from endemic areas bordering Myanmar, Cambodia and Malaysia. Results revealed 6 haplotypes in exon 2 of Pfcrt with 2 novel substitutions at c.243A > G (p.R81) and c.251A > T (p.N84I). Positive selection was observed at amino acid residues 75, 76 and 97. Four, 3, and 2 alleles of microsatellite (AT/TA) repeats occurred in introns 1, 2 and 4, respectively, resulting in 7 different 3-locus haplotypes. The number of haplotypes and haplotype diversity of exon 2, and introns 1, 2 and 4 were significantly greater among isolates collected during 2009 and 2016 than those collected during 1997 and 2008 when 3-day ACT and 2-day ACT regimens were implemented nationwide, respectively (p falciparum in Thailand continues to evolve and could have been affected by selective pressure from modification of ACT regimen.
    Matched MeSH terms: Malaria, Falciparum/parasitology*
  9. Naing C, Whittaker MA
    Infect Dis Poverty, 2018 Feb 09;7(1):10.
    PMID: 29427995 DOI: 10.1186/s40249-018-0392-9
    BACKGROUND: Plasmodium vivax is the most geographically widespread species among human malaria parasites. Immunopathological studies have shown that platelets are an important component of the host innate immune response against malaria infections. The objectives of this study were to quantify thrombocytopaenia in P. vivax malaria patients and to determine the associated risks of severe thrombocytopaenia in patients with vivax malaria compared to patients with P. falciparum malaria.

    MAIN BODY: A systematic review and meta-analysis of the available literature on thrombocytopaenia in P. vivax malaria patients was undertaken. Relevant studies in health-related electronic databases were identified and reviewed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Fifty-eight observational studies (n = 29 664) were included in the current review. Severe thrombocytopaenia (malaria and those with P. falciparum malaria (OR: 1.98, 95% CI: 0.92-4.25). This indicates that thrombocytopaenia is as equally a common manifestation in P. vivax and P. falciparum malaria patients. One study showed a higher risk of developing very severe thrombocytopaenia in children with severe P. vivax malaria than with severe P. falciparum malaria (OR: 2.80, 95% CI: 1.48-5.29). However, a pooled analysis of two studies showed an equal risk among adult severe cases (OR: 1.19, 95% CI: 0.51-2.77). This indicates that the risk of developing thrombocytopaenia in P. vivax malaria can vary with immune status in both children and adults. One study reported higher levels of urea and serum bilirubin in patients with P. vivax malaria and severe thrombocytopaenia compared with patients mild thrombocytopaenia or no thrombocytopaenia, (P falciparum patients (P = 0.09). This implied that both P. vivax and P. falciparum infections could present with bleeding episodes, if there had been a change in platelet counts in the infected patients. A pooled analysis of another two studies showed an equal risk of mortality with severe thrombocytopaenia in both P. vivax and P. falciparum malaria patients (OR: 1.16, 95% CI: 0.30-4.60). However, due to the low number of studies with small sample sizes within the subset of studies that provided clinically relevant information, our confidence in the estimates is limited.

    CONCLUSION: The current review has provided some evidence of the clinical relevance of severe thrombocytopaenia in P. vivax malaria. To substantiate these findings, there is a need for well designed, large-scale, prospective studies among patients infected with P. vivax. These should include patients from different countries and epidemiological settings with various age and gender groups represented.

    Matched MeSH terms: Malaria, Falciparum/parasitology
  10. Srinivasan V, Mohamed M, Zakaria R, Ahmad AH
    Infect Disord Drug Targets, 2012 Oct;12(5):371-9.
    PMID: 23082960
    Malaria, one of the most deadly diseases of our time affects more than 200 million people across the globe and is responsible for about one million deaths annually. Until recently Plasmodium falciparum has been the main cause for malarial infection in human beings but now Plasmodium knowlesi from Malaysia remains as one of the most virulent parasite spreading fast not only in Malaysia but in different parts of the world. Hence there is urgent need for the global fight to control malaria. Global malaria eradication program by use of insecticide spraying has resulted in good response in the past. Treatment of malaria infected patients with anti-malarial drugs has helped to eliminate malarial infections successfully but with increased resistance displayed by malarial parasites to these drugs there is resurgence of malaria caused both by drug resistance as well as by infection caused by new malarial species like Plasmodium knowlesi. With recent advances on molecular studies on malarial parasites it is now clear that the pineal hormone melatonin acts as a cue for growth and development of Plasmodium falciparum. Same may be true for Plasmodium knowlesi also. Hence treatment modalities that can effectively block the action of melatonin on Plasmodium species during night time by way of using either bright light therapy or use of melatonin receptor blocking can be considered as useful approaches for eliminating malarial infection in man.
    Matched MeSH terms: Malaria, Falciparum/parasitology
  11. Khairul MF, Min TH, Low JH, Nasriyyah CH, A'shikin AN, Norazmi MN, et al.
    Jpn J Infect Dis, 2006 Oct;59(5):329-31.
    PMID: 17060702
    Fluoxetine (FLX), a P-glycoprotein inhibitor with antimalarial activity, is promising candidate for reversing chloroquine/mefloquine (CQ/MQ) resistance. The Dd2 strain of CQ- and MQ-resistant Plasmodium falciparum was synchronized and assayed with various concentrations of CQ/MQ individually and in combination with FLX or verapamil (VPL). Our results indicated the 50% inhibitory concentration values of CQ and MQ were greatly lowered when FLX was used simultaneously. Isobolograms indicated that CQ-FLX combinations are more synergistic (mean fractional inhibitory concentration [FIC] index 0.55) than MQ-FLX (mean FIC index 0.64), and their synergistic effect was better than or at par with CQ-VPL (mean FIC index 0.88) and MQ-VPL (mean FIC index 0.60) combinations. We conclude that the FLX potentiates the CQ and MQ response on multidrug-resistant P. falciparum at clinically achievable concentrations.
    Matched MeSH terms: Malaria, Falciparum/parasitology*
  12. Zaw MT, Lin Z, Emran NA
    J Microbiol Immunol Infect, 2020 Oct;53(5):676-681.
    PMID: 31563454 DOI: 10.1016/j.jmii.2019.07.006
    The mortality caused by Plasmodium falciparum was reduced by Artemisinin (ART) and ART combination therapy (ACT). However, Artemisinin resistance (ART-R) emerge during 2008 in Cambodia and spread to Greater Mekong Subregion (GMS). ART-R was confirmed not to spread to India, a gateway to whole Africa. The whole genome sequencing approach of P. falciparum assumed the k13 gene encoded Kelch protein was discovered to be associated with ART-R. Of the single nucleotide polymorphisms (SNPs) of k13 gene, C580Y mutant was commonly dominant in Cambodia, Myanmar, Thailand, Laos and Vietnam and assumed to be one of strong molecular markers for ART-R in P. falciparum isolates in GMS. Literatures published between 2017 and 2018 were reviewed in this work. F446I is observed to be doubtful molecular marker as ART-R marker. Transgenic experiment showed that parasite with F446I mutation displayed prolonged clearance in respond to ART while C580Y was applied as positive control mutant. Furthermore, study of C580Y allele in four countries Cambodia, Thailand, Laos resulted in single origin whereas the parasite with this allele showed multi-origin in three Provinces of Vietnam. As artemisinin was short acting drug, the role of long acting partner drug was studied by using transgenic C580Y mutant and C580 to leave recrudescent P. falciparum. Recently, there was treatment failure with ACT in some countries in GMS. In this review, the importance of C580Y mutation in the study of ART-R was discussed.
    Matched MeSH terms: Malaria, Falciparum/parasitology
  13. Zaw MT, Emran NA, Lin Z
    J Microbiol Immunol Infect, 2018 Apr;51(2):159-165.
    PMID: 28711439 DOI: 10.1016/j.jmii.2017.06.009
    BACKGROUND: In the fight against malaria caused by Plasmodium falciparum, the successes achieved by artemisinin were endangered by resistance of the parasites to the drug. Whole genome sequencing approach on artemisinin resistant parasite line discovered k13 gene associated with drug resistance. In vitro and in vivo studies indicated mutations in the k13 gene were linked to the artemisinin resistance.

    METHODOLOGY: The literatures published after April, 2015 up to December, 2016 on k13 mutant alleles for artemisinin resistance in Plasmodium falciparum and relevant literatures were comprehensively reviewed.

    RESULTS: To date, 13 non-synonymous mutations of k13 gene have been observed to have slow parasite clearance. Worldwide mapping of k13 mutant alleles have shown mutants associated with artemisinin resistance were confined to southeast Asia and China and did not invade to African countries. Although in vitro ring stage survival assay of 0-3 h was a recently developed assay, it was useful for rapid detection of artemisinin resistance associated k13 allelic marker in the parasite. Recently, dissemination of k13 mutant alleles was recommended to be investigated by identity of haplotypes. Significant characteristics of well described alleles in the reports were mentioned in this review for the benefit of future studies.

    CONCLUSION: According to the updates in the review, it can be concluded artemisinin resistance does not disseminate to India and African countries within short period whereas regular tracking of these mutants is necessary.

    Matched MeSH terms: Malaria, Falciparum/parasitology
  14. Lau TY, Sylvi M, William T
    Malar J, 2013;12:445.
    PMID: 24321120 DOI: 10.1186/1475-2875-12-445
    The sulphadoxine/pyrimethamine (SDX/PYR) combination had been chosen to treat uncomplicated falciparum malaria in Malaysia for more than 30 years. Non-silent mutations in dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are responsible for the resistance to pyrimethamine and sulphadoxine, respectively. This study reports the mutational analysis of pfdhfr and pfdhps in single Plasmodium falciparum infection isolates from the interior division of Sabah, Malaysian Borneo.
    Matched MeSH terms: Malaria, Falciparum/parasitology
  15. Abdullah NR, Norahmad NA, Jelip J, Sulaiman LH, Mohd Sidek H, Ismail Z, et al.
    Malar J, 2013;12:198.
    PMID: 23758930 DOI: 10.1186/1475-2875-12-198
    Sulphadoxine-pyrimethamine (SP) has been in use for the treatment of uncomplicated falciparum malaria in Malaysia since the 1970s and is still widely employed in spite of widespread clinical resistance. Resistance to SP is known to be mediated by mutations in the pfdhfr and pfdhps genes. The aim of the present study was to investigate the distribution of pfdhfr and pfdhps gene polymorphism in Plasmodium falciparum field isolates from Kalabakan, Sabah, in northern Borneo.
    Matched MeSH terms: Malaria, Falciparum/parasitology*
  16. Parker D, Lerdprom R, Srisatjarak W, Yan G, Sattabongkot J, Wood J, et al.
    Malar J, 2012 Aug 21;11:290.
    PMID: 22908880 DOI: 10.1186/1475-2875-11-290
    BACKGROUND: Drug and multidrug-resistant Plasmodium falciparum malaria has existed in Thailand for several decades. Furthermore, Thailand serves as a sentinel for drug-resistant malaria within the Greater Mekong sub-region. However, the drug resistance situation is highly dynamic, changing quickly over time. Here parasite in vitro drug sensitivity is reported for artemisinin derivatives, mefloquine, chloroquine and quinine, across Thailand.

    METHODS: Blood was drawn from patients infected with P. falciparum in seven sentinel provinces along Thai international borders with Cambodia, Myanmar, Laos, and Malaysia. In vitro parasite sensitivity was tested using the World Health Organization's microtest (mark III) (between 1994 and 2002) and the histidine-rich protein-2 (HRP2)-based enzyme-linked immunosorbent assay (in 2010). Following World Health Organization protocol, at least 30 isolates were collected for each province and year represented in this study. Where possible, t-tests were used to test for significant differences.

    RESULTS: There appears to be little variation across study sites with regard to parasite sensitivity to chloroquine. Quinine resistance appears to have been rising prior to 1997, but has subsequently decreased. Mefloquine sensitivity appears high across the provinces, especially along the north-western border with Myanmar and the eastern border with Cambodia. Finally, the data suggest that parasite sensitivity to artemisinin and its derivatives is significantly higher in provinces along the north-western border with Myanmar.

    CONCLUSIONS: Parasite sensitivity to anti-malarials in Thailand is highly variable over time and largely mirrors official drug use policy. The findings with regard to reduced sensitivity to artemisinin derivatives are supported by recent reports of reduced parasite clearance associated with artemisinin. This trend is alarming since artemisinin is considered the last defence against malaria. Continued surveillance in Thailand, along with increased collaboration and surveillance across the entire Greater Mekong sub-region, is clearly warranted.

    Matched MeSH terms: Malaria, Falciparum/parasitology*
  17. Atroosh WM, Al-Mekhlafi HM, Mahdy MA, Surin J
    Malar J, 2012;11:251.
    PMID: 22853645 DOI: 10.1186/1475-2875-11-251
    Malaria is still a public health problem in Malaysia with chloroquine (CQ) being the first-line drug in the treatment policy of uncomplicated malaria. There is a scarcity in information about the magnitude of Plasmodium falciparum CQ resistance. This study aims to investigate the presence of single point mutations in the P. falciparum chloroquine-resistance transporter gene (pfcrt) at codons 76, 271, 326, 356 and 371 and in P. falciparum multi-drug resistance-1 gene (pfmdr1) at codons 86 and 1246, as molecular markers of CQ resistance.
    Matched MeSH terms: Malaria, Falciparum/parasitology
  18. Alareqi LM, Mahdy MA, Lau YL, Fong MY, Abdul-Ghani R, Ali AA, et al.
    Malar J, 2016 Jan 28;15:49.
    PMID: 26821911 DOI: 10.1186/s12936-016-1103-2
    Malaria is a public health threat in Yemen, with 149,451 cases being reported in 2013. Of these, Plasmodium falciparum represents 99%. Prompt diagnosis by light microscopy (LM) and rapid diagnostic tests (RTDs) is a key element in the national strategy of malaria control. The heterogeneous epidemiology of malaria in the country necessitates the field evaluation of the current diagnostic strategies, especially RDTs. Thus, the present study aimed to evaluate LM and an RDT, combining both P. falciparum histidine-rich protein-2 (PfHRP-2) and Plasmodium lactate dehydrogenase (pLDH), for falciparum malaria diagnosis and survey in a malaria-endemic area during the transmission season against nested polymerase chain reaction (PCR) as the reference method.
    Matched MeSH terms: Malaria, Falciparum/parasitology
  19. Loughland JR, Woodberry T, Oyong D, Piera KA, Amante FH, Barber BE, et al.
    Malar J, 2021 Feb 16;20(1):97.
    PMID: 33593383 DOI: 10.1186/s12936-021-03642-0
    BACKGROUND: Plasmodium falciparum malaria increases plasma levels of the cytokine Fms-like tyrosine kinase 3 ligand (Flt3L), a haematopoietic factor associated with dendritic cell (DC) expansion. It is unknown if the zoonotic parasite Plasmodium knowlesi impacts Flt3L or DC in human malaria. This study investigated circulating DC and Flt3L associations in adult malaria and in submicroscopic experimental infection.

    METHODS: Plasma Flt3L concentration and blood CD141+ DC, CD1c+ DC and plasmacytoid DC (pDC) numbers were assessed in (i) volunteers experimentally infected with P. falciparum and in Malaysian patients with uncomplicated (ii) P. falciparum or (iii) P. knowlesi malaria.

    RESULTS: Plasmodium knowlesi caused a decline in all circulating DC subsets in adults with malaria. Plasma Flt3L was elevated in acute P. falciparum and P. knowlesi malaria with no increase in a subclinical experimental infection. Circulating CD141+ DCs, CD1c+ DCs and pDCs declined in all adults tested, for the first time extending the finding of DC subset decline in acute malaria to the zoonotic parasite P. knowlesi.

    CONCLUSIONS: In adults, submicroscopic Plasmodium infection causes no change in plasma Flt3L but does reduce circulating DCs. Plasma Flt3L concentrations increase in acute malaria, yet this increase is insufficient to restore or expand circulating CD141+ DCs, CD1c+ DCs or pDCs. These data imply that haematopoietic factors, yet to be identified and not Flt3L, involved in the sensing/maintenance of circulating DC are impacted by malaria and a submicroscopic infection. The zoonotic P. knowlesi is similar to other Plasmodium spp in compromising DC in adult malaria.

    Matched MeSH terms: Malaria, Falciparum/parasitology
  20. Oyong DA, Loughland JR, SheelaNair A, Andrew D, Rivera FDL, Piera KA, et al.
    Malar J, 2019 Sep 18;18(1):312.
    PMID: 31533836 DOI: 10.1186/s12936-019-2962-0
    BACKGROUND: Anaemia is a major consequence of malaria, caused by the removal of both infected and uninfected red blood cells (RBCs) from the circulation. Complement activation and reduced expression of complement regulatory proteins (CRPs) on RBCs are an important pathogenic mechanism in severe malarial anaemia in both Plasmodium falciparum and Plasmodium vivax infection. However, little is known about loss of CRPs on RBCs during mild malarial anaemia and in low-density infection.

    METHODS: The expression of CRP CR1, CD55, CD59, and the phagocytic regulator CD47, on uninfected normocytes and reticulocytes were assessed in individuals from two study populations: (1) P. falciparum and P. vivax-infected patients from a low transmission setting in Sabah, Malaysia; and, (2) malaria-naïve volunteers undergoing P. falciparum induced blood-stage malaria (IBSM). For clinical infections, individuals were categorized into anaemia severity categories based on haemoglobin levels. For IBSM, associations between CRPs and haemoglobin level were investigated.

    RESULTS: CRP expression on RBC was lower in Malaysian individuals with P. falciparum and P. vivax mild malarial anaemia compared to healthy controls. CRP expression was also reduced on RBCs from volunteers during IBSM. Reduction occurred on normocytes and reticulocytes. However, there was no significant association between reduced CRPs and haemoglobin during IBSM.

    CONCLUSIONS: Removal of CRPs occurs on both RBCs and reticulocytes during Plasmodium infection even in mild malarial anaemia and at low levels of parasitaemia.

    Matched MeSH terms: Malaria, Falciparum/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links