Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Basari N, Mustafa NS, Yusrihan NEN, Yean CW, Ibrahim Z
    Trop Life Sci Res, 2019 Jan;30(1):23-31.
    PMID: 30847031 MyJurnal DOI: 10.21315/tlsr2019.30.1.2
    Ficus plants are commonly planted as ornamentals along roadsides in Malaysia. In 2010, Ficus plants in Kuala Terengganu were found to be attacked by a moth, identified as Trilocha varians. The larvae of this moth fed on Ficus leaves causing up to 100% defoliation. This study was conducted to determine the life cycle of T. varians under two different environmental temperatures and to control this pest using two different insecticides. Our findings showed that there were significant differences in the time taken for eggs to hatch and larval and pupation period between low and high environmental temperatures. Results also showed that fipronil had lower LT50 and LT95 than malathion. This study provides new information on the life history of T. varians under two different conditions and the efficiency in controlling T. varians larvae using insecticides. The results of this study are important for future management in controlling T. varians population especially in Kuala Terengganu, Malaysia.
    Matched MeSH terms: Malathion
  2. Rohani A, Aziz I, Zurainee MN, Rohana SH, Zamree I, Lee HL
    Trop Biomed, 2014 Mar;31(1):159-65.
    PMID: 24862056 MyJurnal
    Chemical insecticides are still considered as important control agents for malaria vector control. However, prolonged use of these chemicals may select mosquito vectors for resistance. In this study, susceptibility status of adult Anopheles maculatus collected from 9 localities in peninsular Malaysia, viz., Jeli, Temerloh, Pos Banun, Senderut, Jeram Kedah, Segamat, Kota Tinggi, Kluang and Pos Lenjang were determined using the standard WHO bioassay method in which the adult mosquitoes were exposed to standard insecticide impregnated papers malathion, permethrin, DDT and deltamethrin--at pre-determined diagnostic dosage. Deltamethrin was most effective insecticide among the four insecticides tested, with the LT50 of 29.53 min, compared to malathion (31.67 min), DDT (47.76 min) and permethrin (48.01 min). The effect of all insecticides on the laboratory strain was greater (with all insecticides demonstrated LT50 < 1 hour) than the field strains (deltamethrin 32.7, malathion 53.0, permethrin 62.0, DDT 67.4 min). An. maculatus exhibited low degree of resistance to all test insecticides, indicating that these chemical insecticides are still effective in the control of malaria vector.
    Matched MeSH terms: Malathion/pharmacology
  3. Hidayati H, Nazni WA, Lee HL, Sofian-Azirun M
    Trop Biomed, 2011 Aug;28(2):425-37.
    PMID: 22041765
    Bioassay test against malathion had been carried out with larval and adult stages of Aedes aegypti. The mosquitoes were under selection pressure against malathion for forty-five consecutive generations. The rate of resistance development was measured by LC(50) and LT(50) values. The larvae and adult females, after subjection to malathion selection for 45 generations, developed high resistance level to malathion, with resistance ratio of 52.7 and 3.24 folds, respectively over control mosquitoes. Cross-resistance towards the same and different groups of insecticides was determined using the F44 and F45 malathion-selected adult females. Insecticides tested were DDT (4.0%), permethrin (0.75%), propoxur (0.1%), fenitrothion (1%), λ-cyhalothrin (0.05%) and cyfluthrin (0.15%). Results indicated that the mosquitoes were highly resistant to DDT and fenitrothion, moderately resistant to propoxur, tolerant to permethrin and λ-cyhalothrin, and very low resistant to cyfluthrin.
    Matched MeSH terms: Malathion/pharmacology*
  4. Mahat NA, Jayaprakash PT, Zafarina Z
    Trop Biomed, 2012 Mar;29(1):9-17.
    PMID: 22543598 MyJurnal
    The use of Chrysomya megacephala larvae for detecting malathion for diagnosing the cause of death was investigated. This could prove useful when the visceral organs have become liquefied during decomposition and therefore cannot be sampled. A field experiment was conducted in which C. megacephala were allowed to colonise naturally the corpses of rabbits that had died of malathion poisoning. The concentration of malathion increased gradually during the larval stages of C. megacephala reaching the maximum concentration in the third instar larvae. The concentration of malathion declined during prepupal stage and reached its lowest level among tenerals. The average malathion concentrations in C. megacephala growing in poisoned rabbit corpses left in a sunlit habitat were significantly higher (p<0.05) than those growing on poisoned rabbits left in a shaded habitat. The concentrations of malathion in the different stages of development of C. megacephala were moderately correlated (r = 0.51-0.69) with the administered doses as well as with those estimated in visceral organs. Thus, it would not be reliable to suggest the formulation of mathematical algorithms for relating the concentration of malathion found in the different stages of development of C. megacephala with those found in the visceral organs. However, in the context of forensic investigation, the qualitative detection of malathion in C. megacephala may prove useful in diagnosing the cause of death, since malathion is a common cause of accidental and suicidal deaths.
    Matched MeSH terms: Malathion/analysis*
  5. Selvi S, Edah MA, Nazni WA, Lee HL, Tyagi BK, Sofian-Azirun M, et al.
    Trop Biomed, 2010 Dec;27(3):534-50.
    PMID: 21399596 MyJurnal
    Aedes albopictus was bioassayed to determine resistance development to malathion (OP). Two methods were applied, including WHO larval bioassay to determine the susceptibility to lethal concentration (LC), and adult bioassay to determine lethal time (LT). Larvae from colonies that had undergone selection pressure with malathion to yield 50% mortality were further subjected to selection for subsequent 10 generations. Selection of Ae. albopictus with malathion could relatively induce a consistent resistance ratio of 1.0 throughout 10 generations. It was noted that Ae. albopictus larvae showed less susceptibility to malathion compared to adults. The susceptibility test of adult mosquitoes to diagnostic dosage of 5.0% malathion-impregnated paper showed a variety of susceptibility to malathion when compared to the susceptible strain. Bioassay results indicated that the LT50 values of malathion-selected Ae. albopictus ranged between 11.5 - 58.8 minutes for ten consecutive generations. Biochemical enzyme studies indicated that there was a significant difference (p < 0.05) in esterase level in malathion-selected mosquitoes compared to non-selected control. Electrophoretic patterns of non-specific esterases at different life stages in malathion-selected Ae. albopictus suggested that non-specific esterases do not play a role in resistance of malathion-selected Ae. albopictus.
    Matched MeSH terms: Malathion/pharmacology*
  6. Selvi S, Edah MA, Nazni WA, Lee HL, Azahari AH
    Trop Biomed, 2007 Jun;24(1):63-75.
    PMID: 17568379 MyJurnal
    Larvae and adults of Culex quinquefasciatus were used for the test undertaken for malathion resistant strain (F61 - F65) and permethrin resistant strain (F54 - F58). The results showed that the LC50 for both malathion (F61 - F65) and permethrin (F54 - F58) resistant Cx. quinquefasciatus increased steadily throughout the subsequent five generations, indicating a marked development of resistance. The adult female malathion resistant strain have developed a high resistance level to malathion diagnostic dosage with a resistance ratio of 9.3 to 17.9 folds of resistance compared with the susceptible Cx. quinquefasciatus. Permethrin resistance ratio remained as 1.0 folds of resistance at every generation. It was obvious that malathion resistance developed at a higher rate in adult females compared to permethrin. Enzyme-based metabolic mechanisms of insecticide resistance were investigated based on the biochemical assay principle. From the results obtained obviously shows that there is a significant difference (p < 0.05) in esterase level in both malathion and permethrin selected strains. Female malathion selected strain has the higher level of esterase activity compared to the female permethrin selected strain at (0.8 to 1.04) alpha-Na micromol/min/mg protein versus (0.15 to 0.24) alpha-Na micromol/min/mg protein respectively. This indicated increased level of non-specific esterase is playing an important role in resistance mechanism in female malathion selected strain. Permethrin selected strain exhibited non-specific esterase activity at a very low level throughout the different life stages compared to malathion selected strain. This study suggests that life stages play a predominant role in conferring malathion and permethrin resistance in Cx. quinquefasciatus.
    Matched MeSH terms: Malathion/pharmacology*
  7. Rumiza Abd R, Osman K, Mohd Iswadi I, Raja Muhammad Z, Rogaya Abu H
    Trop Biomed, 2008 Dec;25(3):184-90.
    PMID: 19287355
    This study was conducted to examine the effect of malathion on the development of Chrysomya megacephala. A total of 12 adult Sprague-Dawley rats was divided into 4 groups. Each animal in the 4 groups was given orally 0 (control), 10, 25 and 50ml/kg body weight of malathion, respectively. Chrysomya megacephala larvae were then allowed to grow on the liver of carcass. Larvae development was estimated by means of weight and length, time of adult emergence and survival rate. Results indicated that for the first 6 to 30 hours, larvae from control group developed more rapidly than larvae feeding on tissue containing malathion. However, the 3 doses of malathion did not exhibit significant impact on larvae length and weight. The time required for adult emergence was significantly greater for malathion-treated colony which was 10 days compared to 7 days in control colony. Control larvae of C. megacephala had higher survival rate compared to larvae exposed to the three different doses of malathion. Analysis of the tissues indicated that all rats and fly samples were positive for malathion. Malathion concentration was highest in liver. It was concluded that the presence of malathion altered the development rate of C. megacephala and thus disrupted normal postmortem interval estimation.
    Matched MeSH terms: Malathion/pharmacokinetics*; Malathion/pharmacology
  8. Hidayati H, Nazni WA, Mohd SA
    Trop Biomed, 2008 Apr;25(1):75-9.
    PMID: 18600207 MyJurnal
    The standard laboratory strain was found to be heterozygous for susceptibility. Hence, an attempt was made to obtain a homozygous susceptible strain in Culex quinquefasciatus (Say) using single raft sib-selection method. Lab-bred females of Cx. quinquefasciatus from insectariums, Unit of Medical Entomology were used in the experiment. After blood feeding Cx. quinquefasciatus mosquitoes laid eggs in raft form, ten rafts selected randomly for the test. Each egg raft was introduced into a plastic tray from number one to number ten. Twenty-five third stage larvae from each tray were exposed to 17.5 microl from 500mg/l malathion in a paper cup label number 1 to number ten. In the bioassay, which had 100% mortality, the respective larva in that particular tray was bred to adult stage for the following generation. Less than 7days old female mosquitoes that emerged from F(0) were used in the test. The F(0) and the subsequent adult and larval stage generations were subjected to adult and larval bioassay. After selection for about 10 generations, a homozygous susceptible strain in Cx. quinquefasciatus was obtained.
    Matched MeSH terms: Malathion/pharmacology
  9. Nazni WA, Lee HL, Azahari AH
    Trop Biomed, 2005 Jun;22(1):63-8.
    PMID: 16880755 MyJurnal
    The susceptibility of Culex quinquefasciatus to chemical insecticides in two field sites in Kuala Lumpur was evaluated using the WHO standard susceptibility test. Less then 7 days old female mosquitos, reared from wild caught females were exposed to discriminating dosages of insecticides at recommended exposure periods. The larval bioassay were conducted using the multiple concentrations and the LC50 value was determined. The results indicated that cyfluthrin is the most effective among all the insecticides tested with LT50 value of 29.95 min and 28.59 min, for the strain from Ampang Hill and Pantai Dalam, respectively. It was surprisingly to note that both these field strains showed 0% mortality when tested against malathion and DDT. The LC50 value indicated that both strains were highly resistant to malathion with resistance ratio of 17,988 folds and 14,053 folds, respectively. This concludes that resistance at larval stages is extremely high compared to adult stages.
    Matched MeSH terms: Malathion/pharmacology
  10. Hamdan H, Sofian-Azirun M, Nazni W, Lee HL
    Trop Biomed, 2005 Jun;22(1):45-52.
    PMID: 16880753
    Laboratory-bred females of Culex quinquefasciatus, Aedes aegypti and Aedes albopictus from the insectarium, Unit of Medical Entomology, Institute for Medical Research were used in the experiment. The late third stage of the F0 larvae which survived the high selection pressure of malathion, permethrin and temephos were reared and colonies were established from adults that emerged. Cx. quinquefasciatus larvae were subjected to selection by malathion and permethrin for 40 generations, Ae. aegypti larvae to malathion, permethrin and temephos for 32 generations and Ae. albopictus larvae were selected against malathion and permethrin for 32 generations and 20 generations against temephos. The rate of resistance development was measured by LC50 value. Cx. quinquefasciatus larvae developed higher resistance to malathion and permethrin compared to Ae. aegypti and Ae. albopictus. On the whole, permethrin resistance developed at a faster rate than malathion and temephos.
    Matched MeSH terms: Malathion/pharmacology
  11. Selvi S, Endah MA, Nazni WA, Lee HL, Azahari AH
    Trop Biomed, 2005 Dec;22(2):103-13.
    PMID: 16883275
    To determine resistance level and characterize malathion and permethrin resistance in Culex quinquefasciatus, two methods were used namely: WHO procedures of larval bioassay to determine the susceptibility of lethal concentration (LC) and adult bioassay to determine the lethal time (LT) which are resistant to malathion and permethrin. These mosquito strains were bred in the Insectarium, Division of Medical Entomology, IMR. Thousands of late fourth instar larvae which survived the selection pressure to yield 50% mortality of malathion and permethrin were reared and colonies were established from adults that emerged. Larvae from these colonies were then subjected to the subsequent 10 generations in the test undertaken for malathion resistant strain (F61 - F70) and permethrin resistant strain (F54 - F63). Selection pressure at 50% - 70% mortality level was applied to the larvae of each successive generation. The rate of resistance development and resistance ratio (RR) were calculated by LC5 0 for larval bioassay and LT50 value for adult bioassay. The lab bred Cx. quinquefasciatus was used as a susceptible strain for comparison purpose. The adult bioassay test was carried out by using diagnostic dosages of malathion 5.0%, permethrin 0.75% and with propoxur 0.1%. All bioassay results were subjected to probit analysis. The results showed that LC5 0 for both malathion (F61 - F70) and permethrin (F54 - F63) resistant Cx. quinquefasciatus increased steadily to the subsequent 10 generations indicating a marked development of resistance. The adult female malathion resistant strain have developed high resistance level to malathion diagnostic dosage with resistance ratio 9.3 to 9.6 folds of resistance. Permethrin resistance ratio remained as 1.0 folds of resistance at every generation. It was obvious that malathion resistance developing at a higher rate in adult females compared to permethrin. Female adults exposed to 2 hours of exposure period for propoxur 0.1% showed presence of cross-resistance among the both strains of mosquitoes towards propoxur and it was indicated by 70%-100% mortality at 24 hours post-recovery period.
    Matched MeSH terms: Malathion/pharmacology*
  12. Sinniah B, Sinniah D, Rajeswari B
    Trop Geogr Med, 1983 Dec;35(4):337-42.
    PMID: 6670116
    A survey of 4.112 primary school children living in and around Kuala Lumpur, Malaysia, revealed that 12.9% of the children were infested with Pediculus humanus capitis. Indians (28.3%) and Malays (18.9%) have a higher prevalence than Chinese (4.6%). The higher prevalence among Indians and Malays correlates well with their lower socio-economic status in the community; long hair also contributes to the higher rates of pediculosis among them. The prevalence rate was found to be related to socio-economic status, length of hair, family size, age, crowding and personal hygiene. Treatment with 0.2% and 0.5% malathion in coconut oil gave cure rates of 93% and 100%. Treatment with gammexane and actellic at 0.5% concentration gave a cure rate of 100% against adults and nymphs of Pediculus humanus capitis.
    Matched MeSH terms: Malathion/therapeutic use
  13. Nazni WA, Lee HL, Sa'diyah I
    PMID: 10772575
    Wild caught female Culex quinquefasciatus (Say) from Kuala Lumpur were blood fed and reared in the insectarium. The late third stage of the F1 larvae which survived the high selection pressure of malathion and permethrin were reared and colonies were established from adults that emerged. Larvae from these colonies were then subjected in the subsequent 9 generations to higher selection pressure. The rate of resistance development were measured by LC50 value of larval bioassay, LT50 value of adult bioassay and the frequency of the elevated esterase levels. In another set of experiments using the same batch of Culex mosquitos, the larvae were not exposed to any insecticides and the decrease in resistance rate was monitored in each subsequent 9 generations by using similar methods. The heterozygous standard laboratory strain was selected for susceptibility using the single raft sib-selection method. The result showed that the field collected F1 generation was 96.0 and 6.3 fold more resistant to malathion and permethrin, respectively. After selection for about 9 generations the resistance ratio to malathion and permethrin was 6.2 and 767.3 fold more compared to the LC50 values of F1 generations, respectively. Esterase in F1 larvae was 6.0 fold more than the standard laboratory strain.
    Matched MeSH terms: Malathion/pharmacology*
  14. Ho TM, Fauziah MK, Saleh I
    PMID: 1523464
    Five pesticides were evaluated against laboratory colonies of Leptotrombidium fletcheri (Womersly and Heaslip) by the Pasteur pipet technique. The pesticides were dieldrin (LC50 = 3.6 ppm, LC99 = 18.2 ppm), bromopropylate (LC50 = 9.2 ppm, LC99 = 239.6 ppm), dicofol (LC50 = 27.8 ppm, LC99 = 118.1 ppm), fenthion (LC50 = 15.4 ppm, LC99 = 29.7 ppm), and malathion (LC50 = 84.7 ppm, LC99 = 313.9 ppm). Dieldrin was the most toxic. Dicofol was recommended for further evaluation in field trials.
    Matched MeSH terms: Malathion
  15. Lee HL, Tadano T
    PMID: 7855659
    The ability to identify the occurrence of different resistance genotypes in field populations of mosquito is considered important for the purpose of optimising chemical control operations. The recent development of rapid microassays of enzymes responsible for resistance has provided a means for rapidly assessing the genetic background of target mosquito populations. This concept is the topic of investigation in this study. Non-specific esterase activity, which is responsible for the resistance to organophosphates in Malaysian Culex quinquefasciatus Say adults, was determined in 3 field populations from Kuala Lumpur City using rapid enzyme assay. The optical density results were used to estimate the genotypic frequencies of the populations. Subsequently, time-dependent changes in the various frequencies were determined. Such techniques allowed rapid assessment of resistance genotypes for decision-making and its possible use in insect control merits further investigation.
    Matched MeSH terms: Malathion/antagonists & inhibitors*
  16. Chang MS, Chan KL, Ho BC
    PMID: 7973956
    Two field trials in the control of subperiodic brugian filariasis vectors, mainly Mansonia bonneae and Mansonia dives were carried out in Sarawak, East Malaysia. In the first trial, malathion ultra-low volume (ULV) spray was used to control the Mansonia mosquitos in two filariasis endemic villages. Six spray rounds were applied at biweekly intervals at Kampung Rasau and two spray rounds were applied at monthly intervals in Kampung Triboh. ULV malathion spray reduced biting Ma. bonneae population for 3 days after spraying. The biting density decreased to 50% of the pre-treatment level by the 12th - 13th day and reached the pre-treatment level by the 24th - 25th day. Contact bioassay tests on caged Mansonia mosquitos revealed considerable penetration of the malathion aerosol indoors and relatively adequate coverage outdoors. The estimated number of bites per case per day was 1.09 to 4 times less in the sprayed kampung than in an unsprayed control kampung. The parous and daily survival rates of Mansonia mosquitos were not significantly affected by the spraying. In a second trial, chemotherapy with diethylcarbamazine citrate (DEC) was combined with vector control through indoor residual spraying in Kampung Ampungan. The results were compared with the use of only DEC mass treatment in Kampung Sebangkoi and Kampung Sebamban. The combined control measures in Kampung Ampungan reduced the MfD-50 to 44% of the pre-treatment level over a period of 4 years. In the other two kampungs where only mass DEC therapy was applied, the microfilarial rate and MfD-50 declined significantly in the second blood survey but increased gradually in two subsequent follow-up blood surveys. The total insecticidal impact for Ma. bonneae was 3.9 to 1 indoors and 2.7 to 1 outdoors. These results indicated that quarterly pirimiphos-methyl indoor spraying used in integrated control could reduce indoor transmission by 3.9 times. The infective rate from the Ma. bonneae dissected in all three kampungs after the interventions, irrespective of DEC treatment alone or in combination with pirimiphos-methyl residual spraying were reduced by two fold. However the infection rate of brugian filarial larvae in Kampung Ampungan was significantly reduced after the use of DEC and insecticide. Annual Transmission Potential (ATP) showed a high significant reduction in Kampung Ampungan (p > 0.001) compared with Kampungs Sebangkoi and Schambam. In Ampungan, the ATP was reduced by 8.5 times indoors after the MDA and insecticidal application and 3 times outdoors. The reduction rate for Sebangkoi and Sebamban both indoors and outdoors were less than 2 fold.(ABSTRACT TRUNCATED AT 400 WORDS)
    Matched MeSH terms: Malathion
  17. Lee HL, Abimbola O, Singh KI
    PMID: 1488701
    Rapid enzyme microassays for the detection of resistance due to organophosphate and carbamate in individual field-collected strains of Culex quinquefasciatus adults were conducted. These tests allowed accurate differentiation by eye, on the basis of color changes of susceptible and resistant individuals. Two separate tests were conducted for the biochemical assays. In the insensitive acetylcholinesterase (AChE) test, acetylthiocholine iodide (ACTH) and 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) were used as substrate and coupling agent respectively. The resulting yellow chromophore indicated AChE activity. Test results showed that the color intensity decreased as increasing concentrations of propoxur were added, thereby confirming the susceptibility of the enzyme to inhibitor. Assay of non-specific esterase however, indicated elevated levels which were correlated with degree of malathion resistance. Electrophoretic data revealed the presence of 2 esterase bands in all strains. It was concluded that such a pattern was not contributory to malathion resistance in adults.
    Matched MeSH terms: Malathion*
  18. Lee HL, Tien WD, Omar B
    PMID: 9322308
    The insecticide resistance status of 4 strains of adult male Blattella germanica, viz M (Malacca), E (England), F (restaurant) and K (cafeteria) against malathion and bendiocarb compared with a reference susceptible strain (S) was determined by using a modified WHO bioassay method. The results indicated that all the 4 strains were resistant to the insecticides albeit in different degrees. Resistance ratios for malathion ranged from 1.85-41.07-fold, whereas that of bendiocarb ranged from 1.68-4.83-fold. The biochemical microplate enzyme assays technique employed indicated that the resistance in M and E strains were attributed to acetylcholinesterase insensitivity. Multiple resistance was not detected in any of the 4 strains. Parameters of the identified resistance mechanism correlated well with the observed level of resistance. Agar gel electrophoresis showed that variations in esterase isoenzymes did not confer organophosphate and carbamate resistance to the 4 strains.
    Matched MeSH terms: Malathion*
  19. Seleena P, Lee HL, Nazni WA, Rohani A, Kadri MS
    PMID: 9185282
    In an effort to develop a more effective technique in dispersing a microbial control agent, Bacillus thuringiensis (Bt), a truck-mounted ultra low volume (ULV) generator (Scorpion) was used to disperse B. thuringiensis israelensis (Bti) and Bti with malathion. Complete larval and adult mortalities for all tested mosquito species within the first 70-80 feet from the ULV generator were achieved. Beyond that distance less than 50% mortality was achieved as insufficient sprayed particles reached the area. A minimum of 10(3) Bti colony forming units per ml is required to cause 100% larval mortality. The sprayed Bti larvicidal toxins were persistent in the test water 7 days post ULV. The effectiveness of B. thuringiensis jegathesan (Btj), a new mosquitocidal Bt serotype was also evaluated. Similar mortality results as Bti were achieved except that the Btj toxins underwent degradation in the test water, since less than 50% less in larval mortality was observed in 7 days post ULV samples. This ULV method has the potential to disperse Bt and malathion effectively for a simultaneous control of mosquito adults and larvae.
    Matched MeSH terms: Malathion
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links