Displaying publications 1 - 20 of 61 in total

Abstract:
Sort:
  1. Chee ZJ, Chang CYM, Cheong JY, Malek FHBA, Hussain S, de Vries M, et al.
    Int J Psychophysiol, 2024 May;199:112328.
    PMID: 38458383 DOI: 10.1016/j.ijpsycho.2024.112328
    According to the arousal-mood hypothesis, changes in arousal and mood when exposed to auditory stimulation underlie the detrimental effects or improvements in cognitive performance. Findings supporting or against this hypothesis are, however, often based on subjective ratings of arousal rather than autonomic/physiological indices of arousal. To assess the arousal-mood hypothesis, we carried out a systematic review of the literature on 31 studies investigating cardiac, electrodermal, and pupillometry measures when exposed to different types of auditory stimulation (music, ambient noise, white noise, and binaural beats) in relation to cognitive performance. Our review suggests that the effects of music, noise, or binaural beats on cardiac, electrodermal, and pupillometry measures in relation to cognitive performance are either mixed or insufficient to draw conclusions. Importantly, the evidence for or against the arousal-mood hypothesis is at best indirect because autonomic arousal and cognitive performance are often considered separately. Future research is needed to directly evaluate the effects of auditory stimulation on autonomic arousal and cognitive performance holistically.
    Matched MeSH terms: Auditory Perception/physiology
  2. Voon FL, Loffman SJ, Lim MJH, Lee JWY, Iyyalol R, Martin-Iverson MT
    Hum Psychopharmacol, 2024 May;39(3):e2896.
    PMID: 38353526 DOI: 10.1002/hup.2896
    OBJECTIVE: Stimuli received beyond a very short timeframe, known as temporal binding windows (TBWs), are perceived as separate events. In previous audio-visual multisensory integration (McGurk effect) studies, widening of TBWs has been observed in people with schizophrenia. The present study aimed to determine if dexamphetamine could increase TBWs in unimodal auditory and unimodal visual illusions that may have some validity as experimental models for auditory and visual hallucinations in psychotic disorders.

    METHODS: A double-blind, placebo-controlled, counter-balanced crossover design with permuted block randomisation for drug order was followed. Dexamphetamine (0.45 mg/kg, PO, q.d.) was administered to healthy participants. Phantom word illusion (speech illusion) and visual-induced flash illusion/VIFI (visual illusion) tests were measured to determine if TBWs were altered as a function of delay between stimuli presentations. Word emotional content for phantom word illusions was also analysed.

    RESULTS: Dexamphetamine significantly increased the total number of phantom words/speech illusions (p 

    Matched MeSH terms: Auditory Perception/physiology
  3. Mao D, Wunderlich J, Savkovic B, Jeffreys E, Nicholls N, Lee OW, et al.
    Sci Rep, 2021 12 14;11(1):24006.
    PMID: 34907273 DOI: 10.1038/s41598-021-03595-z
    Speech detection and discrimination ability are important measures of hearing ability that may inform crucial audiological intervention decisions for individuals with a hearing impairment. However, behavioral assessment of speech discrimination can be difficult and inaccurate in infants, prompting the need for an objective measure of speech detection and discrimination ability. In this study, the authors used functional near-infrared spectroscopy (fNIRS) as the objective measure. Twenty-three infants, 2 to 10 months of age participated, all of whom had passed newborn hearing screening or diagnostic audiology testing. They were presented with speech tokens at a comfortable listening level in a natural sleep state using a habituation/dishabituation paradigm. The authors hypothesized that fNIRS responses to speech token detection as well as speech token contrast discrimination could be measured in individual infants. The authors found significant fNIRS responses to speech detection in 87% of tested infants (false positive rate 0%), as well as to speech discrimination in 35% of tested infants (false positive rate 9%). The results show initial promise for the use of fNIRS as an objective clinical tool for measuring infant speech detection and discrimination ability; the authors highlight the further optimizations of test procedures and analysis techniques that would be required to improve accuracy and reliability to levels needed for clinical decision-making.
    Matched MeSH terms: Speech Perception/physiology*
  4. Wong HK, Estudillo AJ, Stephen ID, Keeble DRT
    Sci Rep, 2021 04 19;11(1):8507.
    PMID: 33875735 DOI: 10.1038/s41598-021-87933-1
    It is widely accepted that holistic processing is important for face perception. However, it remains unclear whether the other-race effect (ORE) (i.e. superior recognition for own-race faces) arises from reduced holistic processing of other-race faces. To address this issue, we adopted a cross-cultural design where Malaysian Chinese, African, European Caucasian and Australian Caucasian participants performed four different tasks: (1) yes-no face recognition, (2) composite, (3) whole-part and (4) global-local tasks. Each face task was completed with unfamiliar own- and other-race faces. Results showed a pronounced ORE in the face recognition task. Both composite-face and whole-part effects were found; however, these holistic effects did not appear to be stronger for other-race faces than for own-race faces. In the global-local task, Malaysian Chinese and African participants demonstrated a stronger global processing bias compared to both European- and Australian-Caucasian participants. Importantly, we found little or no cross-task correlation between any of the holistic processing measures and face recognition ability. Overall, our findings cast doubt on the prevailing account that the ORE in face recognition is due to reduced holistic processing in other-race faces. Further studies should adopt an interactionist approach taking into account cultural, motivational, and socio-cognitive factors.
    Matched MeSH terms: Visual Perception/physiology*
  5. Zakaria MN, Tahir A, Zainun Z, Salim R, Mohd Sakeri NS, Abdul Wahat NH
    Acta Otolaryngol, 2021 Jan;141(1):62-65.
    PMID: 32957810 DOI: 10.1080/00016489.2020.1817552
    BACKGROUND: The graviceptive otolith function can be measured using subjective visual horizontal (SVH) testing. Nevertheless, more research efforts are required to understand the essential variables affecting SVH.

    OBJECTIVE: The aim of the present study was to determine the effects of type of visual image and gender on subjective visual horizontal (SVH) perception among healthy adults.

    MATERIALS AND METHODS: In this comparative study, 50 healthy young adults were enrolled. While in an upright body position, they were required to report their perception of horizontality for two types of visual images (solid line and arrow pattern) using a computerized SVH device.

    RESULTS: The arrow pattern produced significantly bigger SVH angles than the solid line (p < .001). In contrast, no significant influence of gender was found on SVH results (p = .743), Based on the statistical outcomes, the preliminary normative data for SVH were established.

    CONCLUSIONS AND SIGNIFICANCE: The arrow pattern (a more complex visual image) produced bigger SVH deviations than the simple solid line image. In contrast, the horizontality perception does not appear to be affected by gender. The preliminary normative SVH data gathered from the present study can be beneficial for clinical and future research applications.

    Matched MeSH terms: Space Perception/physiology*; Visual Perception/physiology*
  6. Hairol MI, Nordin N, P'ng J, Sharanjeet-Kaur S, Narayanasamy S, Mohd-Ali M, et al.
    PLoS One, 2021;16(3):e0246846.
    PMID: 33657109 DOI: 10.1371/journal.pone.0246846
    Visual-motor integration (VMI) is related to children's academic performance and school readiness. VMI scores measured using the Beery-Bucktenicka Developmental Test of Visual-Motor Integration (Beery-VMI) can differ due to differences in cultural and socioeconomic backgrounds. This study compared the VMI scores of Malaysian preschoolers with the corresponding US norms and determined the association between their VMI scores and socioeconomic factors. A cross-sectional study was conducted among 435 preschoolers (mean age: 5.95±0.47 years; age range: 5.08-6.83 years) from randomly selected public and private preschools. VMI scores were measured using Beery-VMI in the preschools' classrooms. Information on the socioeconomic characteristics of the preschoolers was obtained using a parent-report questionnaire. One sample t-test was used to compare their VMI scores with the corresponding US norms. Multivariate logistic regression models were used to explore the influence of socioeconomic factors on the preschoolers' VMI scores. Overall, Malaysian preschoolers' VMI performance was similar to the US standardized norms (p>0.05). Children from low-income families were twice likely to obtain lower than average VMI scores than those from higher-income families (OR = 2.47, 95%CI 1.05, 5.86). Children enrolled at public preschools were more likely to obtain a lower than average VMI score than those who enrolled at private preschools (OR = 2.60, 95%CI 1.12, 6.06). Children who started preschool at the age of six were more likely to obtain lower than average VMI scores than those who started at an earlier age (OR = 4.66, 95%CI 1.97, 11.04). Low maternal education level was also associated with lower than average VMI score (OR = 2.60, 95%CI 1.12, 6.06). Malaysian preschoolers' Beery-VMI performance compared well to their US counterparts. Some socioeconomic factors were associated with reduced VMI scores. Those from disadvantaged socioeconomic backgrounds are more likely to have reduced VMI performance, potentially adversely affecting their school readiness, cognitive performance, and future academic achievements.
    Matched MeSH terms: Visual Perception/physiology*
  7. Hamdan A, Ab Latip MQ, Abu Hassim H, Mohd Noor MH, Tengku Azizan TRP, Mohamed Mustapha N, et al.
    Sci Rep, 2020 08 24;10(1):14105.
    PMID: 32839483 DOI: 10.1038/s41598-020-71047-1
    Mirror-induced behaviour has been described as a cognitive ability of an animal to self-direct their image in front of the mirror. Most animals when exposed to a mirror responded with a social interactive behaviour such as aggressiveness, exploratory and repetitive behaviour. The objective of this study is to determine the mirror-induced self-directed behaviour on wildlife at the Royal Belum Rainforest, Malaysia. Wildlife species at the Royal Belum Rainforest were identified using a camera traps from pre-determined natural saltlick locations. Acrylic mirrors with steel frame were placed facing the two saltlicks (Sira Batu and Sira Tanah) and the camera traps with motion-detecting infrared sensor were placed at strategically hidden spot. The behavioural data of the animal response to the mirror were analysed using an ethogram procedure. Results showed that barking deer was the species showing the highest interaction in front of the mirror. Elephants displayed self-directed response through inspecting behaviour via usage of their trunk and legs while interacting to the mirror. Interestingly, the Malayan tapir showed startled behaviour during their interaction with the mirror. However, the absence of interactive behaviour of the Malayan tiger signalled a likelihood of a decreased social response behaviour. These results suggested that the ability to self-directed in front of the mirror is most likely related to the new approach to study the neural mechanism and its level of stimulus response in wildlife. In conclusion, research on mirror-induced self-directed behaviour in wildlife will have profound implications in understanding the cognitive ability of wildlife as an effort to enhance the management strategies and conservation.
    Matched MeSH terms: Visual Perception/physiology
  8. Othman E, Yusoff AN, Mohamad M, Abdul Manan H, Abd Hamid AI, Giampietro V
    Exp Brain Res, 2020 Apr;238(4):945-956.
    PMID: 32179941 DOI: 10.1007/s00221-020-05765-3
    The present study examined the impact of white noise on word recall performance and brain activity in 40 healthy adolescents, split in two groups (normal and low) depending on their auditory working memory capacity (AWMC). Using functional magnetic resonance imaging, participants performed a backward recall task under four different signal-to-noise ratio (SNR) conditions: 15, 10, 5, and 0-dB SNR. Behaviorally, normal AWMC individuals scored significantly higher than low AWMC individuals across noise levels. Whole-brain analyses showed brain activation not to be statistically different between groups across noise levels. In the normal group, a significant positive relationship was found between performance and number of activated voxels in the right superior frontal gyrus. In the low group, significant positive correlations were found between performance and number of activated voxels in left superior frontal gyrus, left inferior frontal gyrus, and left anterior cingulate cortex. These findings suggest that the strategic structure involved in the enhancement of AWM performance may differ in normal and low AWMC individuals.
    Matched MeSH terms: Auditory Perception/physiology*
  9. Dewey RS, Francis ST, Guest H, Prendergast G, Millman RE, Plack CJ, et al.
    Neuroimage, 2020 01 01;204:116239.
    PMID: 31586673 DOI: 10.1016/j.neuroimage.2019.116239
    In animal models, exposure to high noise levels can cause permanent damage to hair-cell synapses (cochlear synaptopathy) for high-threshold auditory nerve fibers without affecting sensitivity to quiet sounds. This has been confirmed in several mammalian species, but the hypothesis that lifetime noise exposure affects auditory function in humans with normal audiometric thresholds remains unconfirmed and current evidence from human electrophysiology is contradictory. Here we report the auditory brainstem response (ABR), and both transient (stimulus onset and offset) and sustained functional magnetic resonance imaging (fMRI) responses throughout the human central auditory pathway across lifetime noise exposure. Healthy young individuals aged 25-40 years were recruited into high (n = 32) and low (n = 30) lifetime noise exposure groups, stratified for age, and balanced for audiometric threshold up to 16 kHz fMRI demonstrated robust broadband noise-related activity throughout the auditory pathway (cochlear nucleus, superior olivary complex, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body and auditory cortex). fMRI responses in the auditory pathway to broadband noise onset were significantly enhanced in the high noise exposure group relative to the low exposure group, differences in sustained fMRI responses did not reach significance, and no significant group differences were found in the click-evoked ABR. Exploratory analyses found no significant relationships between the neural responses and self-reported tinnitus or reduced sound-level tolerance (symptoms associated with synaptopathy). In summary, although a small effect, these fMRI results suggest that lifetime noise exposure may be associated with central hyperactivity in young adults with normal hearing thresholds.
    Matched MeSH terms: Auditory Perception/physiology*
  10. Kalckert A, Perera AT, Ganesan Y, Tan E
    Exp Brain Res, 2019 Jul;237(7):1821-1832.
    PMID: 31079236 DOI: 10.1007/s00221-019-05539-6
    The rubber hand illusion (RHI) is a perceptual phenomenon in which participants experience ownership over a fake model hand through synchronous visuotactile stimulation. Several studies have shown that the illusion occurs only when both hands are in close proximity to each other. In the present study, we systematically examined the role of relative position (lateral, distal) and distance (13-75 cm) of the model hand (with respect to participants' real hand) on illusion experience across both lateral and distal positions. Furthermore, we also compared different facets of the subjective illusion experience; the experience of the model hand being part of one's body (i.e., ownership) and the perceptual fusion of vision and touch (i.e., referral of touch). In two experiments we observed indications for a stronger illusion experiences in distal compared to lateral positions of identical distances, indicating that the illusory effects may vary as a function of the relative position of the hand. Our results also showed that manipulations of distance differently modulated both facets of the illusion. While ownership was restricted to near distances, referral of touch sensations remained stable at farther distances. These results are interpreted in relation to variations in sensory weighting across different planes.
    Matched MeSH terms: Distance Perception/physiology*; Space Perception/physiology; Touch Perception/physiology*
  11. Kalckert A, Bico I, Fong JX
    Perception, 2019 May;48(5):447-455.
    PMID: 30939992 DOI: 10.1177/0301006619839286
    The rubber hand illusion is a perceptual illusion of perceiving an object like a model hand as part of the own body. The question whether the illusion can be induced with noncorporal objects that do not look like a human body part is not perfectly resolved yet. In this study, we directly assessed the subjective experience of two different components within the illusion (i.e., ownership and referral of touch) when a model hand and a balloon are stimulated. We observed significantly stronger illusion ratings for the hand as compared with the balloon, and only the hand ratings showed a clear affirmation of the illusion. We further conclude that (a) a significant difference between synchronous and asynchronous conditions may not be sufficient to argue for the successful induction of the illusion and (b) the subcomponents show a different pattern in the different conditions, which may lead to alternative interpretations. These observations call for a more fine-grained interpretation of questionnaire data in rubber hand illusion studies.
    Matched MeSH terms: Visual Perception/physiology*; Touch Perception/physiology*
  12. Ibrahim IA, Ting HN, Moghavvemi M
    J Int Adv Otol, 2019 Apr;15(1):87-93.
    PMID: 30924771 DOI: 10.5152/iao.2019.4553
    OBJECTIVES: This study uses a new approach for classifying the human ethnicity according to the auditory brain responses (electroencephalography [EEG] signals) with a high level of accuracy. Moreover, the study presents three different algorithms used to classify the human ethnicity using auditory brain responses. The algorithms were tested on Malays and Chinese as a case study.

    MATERIALS AND METHODS: The EEG signal was used as a brain response signal, which was evoked by two auditory stimuli (Tones and Consonant Vowels stimulus). The study was carried out on Malaysians (Malay and Chinese) with normal hearing and with hearing loss. A ranking process for the subjects' EEG data and the nonlinear features was used to obtain the maximum classification accuracy.

    RESULTS: The study formulated the classification of Normal Hearing Ethnicity Index and Sensorineural Hearing Loss Ethnicity Index. These indices classified the human ethnicity according to brain auditory responses by using numerical values of response signal features. Three classification algorithms were used to verify the human ethnicity. Support Vector Machine (SVM) classified the human ethnicity with an accuracy of 90% in the cases of normal hearing and sensorineural hearing loss (SNHL); the SVM classified with an accuracy of 84%.

    CONCLUSION: The classification indices categorized or separated the human ethnicity in both hearing cases of normal hearing and SNHL with high accuracy. The SVM classifier provided a good accuracy in the classification of the auditory brain responses. The proposed indices might constitute valuable tools for the classification of the brain responses according to the human ethnicity.

    Matched MeSH terms: Speech Perception/physiology
  13. Malik AA, Williams CA, Weston KL, Barker AR
    J Sports Sci Med, 2019 03;18(1):1-12.
    PMID: 30787646
    High-intensity interval exercise (HIIE) may not elicit prominent unpleasant feelings even with elevated perceived exertion and physiological stress in adolescents. However, the influence of different HIIE work intensities on the affective experience and cardiorespiratory responses is unknown. This study examined the acute affective, enjoyment, perceived exertion and cardiorespiratory responses to HIIE with different work intensities in adolescents. Participants (n = 16; 8 boys; age 12.0 ± 0.3 years) performed, on separate days, HIIE conditions consisting of 8 x 1-minute work-intervals at 70%, 85%, or 100% peak power separated by 75 seconds recovery at 20 W. Affect, enjoyment and rating of perceived exertion (RPE) were recorded before, during, and after HIIE. Heart rate (HR) and oxygen uptake were collected during HIIE. Affect declined in all conditions (p < 0.01) but 100%HIIE elicited significantly lower affect than 70%HIIE and 85%HIIE at work-interval 8 (all p < 0.02, ES > 1.74; 70%HIIE = 2.5 ± 0.8; 85%HIIE = 1.1 ± 1.5; 100%HIIE = -1.5 ± 1.4 on feeling scale). Similar enjoyment was evident during and after all conditions (all p > 0.44). RPE was significantly higher during 100%HIIE than 70%HIIE and 85%HIIE across all work-intervals (all p < 0.01, ES > 1.56). The majority of the participants attained ≥90%HRmax during 85%HIIE (87%) and 100%HIIE (100%), but not during 70%HIIE (6%). Affect responses during HIIE are dependent on the intensity of the work-interval and are not entirely negative (unpleasant feelings). Despite similar enjoyment, positive affect experienced during 70%HIIE and 85%HIIE could serve as a strategy to encourage exercise adoption and adherence in adolescents, but only 85%HIIE elicits sufficient HR stimulus to facilitate potential health benefits.
    Matched MeSH terms: Perception/physiology*
  14. Zakaria MN, Salim R, Tahir A, Zainun Z, Mohd Sakeri NS
    Clin Otolaryngol, 2019 03;44(2):166-171.
    PMID: 30411501 DOI: 10.1111/coa.13255
    OBJECTIVES: Subjective visual vertical (SVV) is a simple, quick and reliable test for measuring utricular function. The literature on the effects of fundamental demographic variables such as age and gender on SVV is inconclusive and should be supported by research with larger samples. The aim of the present study was to determine the influences of age, gender and geometric pattern of visual image on SVV among healthy adults.

    STUDY DESIGN: This study employed a repeated measures design.

    SETTINGS: Otorhinolaryngology Clinic, Hospital Universiti Sains Malaysia, Malaysia.

    PARTICIPANTS: Eligible Malaysian adults (N = 187, aged 21-75 years) were recruited and categorised into young (N = 60), middle-aged (N = 66) and older (N = 61) groups. Most of them were Malay, and 51.3% were men.

    MAIN OUTCOME MEASURES: Subjective visual vertical angles (in degrees) were determined from each participant in a static upright condition using a computerised SVV device. They were asked to indicate their verticality perception for three types of visual images (solid line, dotted line and arrow pattern).

    RESULTS: Three-way mixed ANOVA revealed insignificant influences of age and gender on SVV results (P > 0.05). In contrast, mean SVV angles were significantly higher for the arrow pattern than for other visual images (P = 0.004).

    CONCLUSION: While the insignificant influences of age and gender on static SVV are further ascertained with larger samples, the perception of verticality is less accurate when aligning a more geometrically complex visual image (ie, arrow pattern). Further SVV research on vestibular-disordered patients is beneficial, particularly to verify the normative data obtained with this complex visual image.

    Matched MeSH terms: Visual Perception/physiology*
  15. Mukari SZMS, Yusof Y, Ishak WS, Maamor N, Chellapan K, Dzulkifli MA
    Braz J Otorhinolaryngol, 2018 12 10;86(2):149-156.
    PMID: 30558985 DOI: 10.1016/j.bjorl.2018.10.010
    INTRODUCTION: Hearing acuity, central auditory processing and cognition contribute to the speech recognition difficulty experienced by older adults. Therefore, quantifying the contribution of these factors on speech recognition problem is important in order to formulate a holistic and effective rehabilitation.

    OBJECTIVE: To examine the relative contributions of auditory functioning and cognition status to speech recognition in quiet and in noise.

    METHODS: We measured speech recognition in quiet and in composite noise using the Malay Hearing in noise test on 72 native Malay speakers (60-82 years) older adults with normal to mild hearing loss. Auditory function included pure tone audiogram, gaps-in-noise, and dichotic digit tests. Cognitive function was assessed using the Malay Montreal cognitive assessment.

    RESULTS: Linear regression analyses using backward elimination technique revealed that had the better ear four frequency average (0.5-4kHz) (4FA), high frequency average and Malay Montreal cognitive assessment attributed to speech perception in quiet (total r2=0.499). On the other hand, high frequency average, Malay Montreal cognitive assessment and dichotic digit tests contributed significantly to speech recognition in noise (total r2=0.307). Whereas the better ear high frequency average primarily measured the speech recognition in quiet, the speech recognition in noise was mainly measured by cognitive function.

    CONCLUSIONS: These findings highlight the fact that besides hearing sensitivity, cognition plays an important role in speech recognition ability among older adults, especially in noisy environments. Therefore, in addition to hearing aids, rehabilitation, which trains cognition, may have a role in improving speech recognition in noise ability of older adults.

    Matched MeSH terms: Speech Perception/physiology*
  16. Majid A, Roberts SG, Cilissen L, Emmorey K, Nicodemus B, O'Grady L, et al.
    Proc Natl Acad Sci U S A, 2018 Nov 06;115(45):11369-11376.
    PMID: 30397135 DOI: 10.1073/pnas.1720419115
    Is there a universal hierarchy of the senses, such that some senses (e.g., vision) are more accessible to consciousness and linguistic description than others (e.g., smell)? The long-standing presumption in Western thought has been that vision and audition are more objective than the other senses, serving as the basis of knowledge and understanding, whereas touch, taste, and smell are crude and of little value. This predicts that humans ought to be better at communicating about sight and hearing than the other senses, and decades of work based on English and related languages certainly suggests this is true. However, how well does this reflect the diversity of languages and communities worldwide? To test whether there is a universal hierarchy of the senses, stimuli from the five basic senses were used to elicit descriptions in 20 diverse languages, including 3 unrelated sign languages. We found that languages differ fundamentally in which sensory domains they linguistically code systematically, and how they do so. The tendency for better coding in some domains can be explained in part by cultural preoccupations. Although languages seem free to elaborate specific sensory domains, some general tendencies emerge: for example, with some exceptions, smell is poorly coded. The surprise is that, despite the gradual phylogenetic accumulation of the senses, and the imbalances in the neural tissue dedicated to them, no single hierarchy of the senses imposes itself upon language.
    Matched MeSH terms: Auditory Perception/physiology*; Visual Perception/physiology*; Olfactory Perception/physiology*; Taste Perception/physiology*; Touch Perception/physiology*
  17. Dzulkarnain AAA, Abdullah SA, Ruzai MAM, Ibrahim SHMN, Anuar NFA, Rahim 'EA
    Am J Audiol, 2018 Sep 12;27(3):294-305.
    PMID: 30054628 DOI: 10.1044/2018_AJA-17-0087
    Purpose: The purpose of this study was to investigate the influence of 2 different electrode montages (ipsilateral and vertical) on the auditory brainstem response (ABR) findings elicited from narrow band (NB) level-specific (LS) CE-Chirp and tone-burst in subjects with normal hearing at several intensity levels and frequency combinations.

    Method: Quasi-experimental and repeated-measures study designs were used in this study. Twenty-six adults with normal hearing (17 females, 9 males) participated. ABRs were acquired from the study participants at 3 intensity levels (80, 60, and 40 dB nHL), 3 frequencies (500, 1000, and 2000 Hz), 2 electrode montages (ipsilateral and vertical), and 2 stimuli (NB LS CE-Chirp and tone-burst) using 2 stopping criteria (fixed averages at 4,000 sweeps and F test at multiple points = 3.1).

    Results: Wave V amplitudes were only 19%-26% larger for the vertical recordings than the ipsilateral recordings in both the ABRs obtained from the NB LS CE-Chirp and tone-burst stimuli. The mean differences in the F test at multiple points values and the residual noise levels between the ABRs obtained from the vertical and ipsilateral montages were statistically not significant. In addition, the ABR elicited from the NB LS CE-Chirp was significantly larger (up to 69%) than those from the tone-burst, except at the lower intensity level.

    Conclusion: Both the ipsilateral and vertical montages can be used to record ABR to the NB LS CE-Chirp because of the small enhancement in the wave V amplitude provided by the vertical montage.

    Matched MeSH terms: Loudness Perception/physiology*
  18. Estudillo AJ, Kaufmann JM, Bindemann M, Schweinberger SR
    Eur J Neurosci, 2018 09;48(5):2259-2271.
    PMID: 30107052 DOI: 10.1111/ejn.14112
    Seeing a face being touched in spatial and temporal synchrony with the own face produces a bias in self-recognition, whereby the other face becomes more likely to be perceived as the self. The present study employed event-related potentials to explore whether this enfacement effect reflects initial face encoding, enhanced distinctiveness of the enfaced face, modified self-identity representations, or even later processing stages that are associated with the emotional processing of faces. Participants were stroked in synchrony or asynchrony with an unfamiliar face they observed on a monitor in front of them, in a situation approximating a mirror image. Subsequently, event-related potentials were recorded during the presentation of (a) a previously synchronously stimulated face, (b) an asynchronously stimulated face, (c) observers' own face, (d) filler faces, and (e) a to-be-detected target face, which required a response. Observers reported a consistent enfacement illusion after synchronous stimulation. Importantly, the synchronously stimulated face elicited more prominent N170 and P200 responses than the asynchronously stimulated face. By contrast, similar N250 and P300 responses were observed in these conditions. These results suggest that enfacement modulates early neural correlates of face encoding and facial prototypicality, rather than identity self-representations and associated emotional processes.
    Matched MeSH terms: Touch Perception/physiology*
  19. Sorokowska A, Groyecka A, Karwowski M, Frackowiak T, Lansford JE, Ahmadi K, et al.
    Chem. Senses, 2018 08 24;43(7):503-513.
    PMID: 29955865 DOI: 10.1093/chemse/bjy038
    Olfaction plays an important role in human social communication, including multiple domains in which people often rely on their sense of smell in the social context. The importance of the sense of smell and its role can however vary inter-individually and culturally. Despite the growing body of literature on differences in olfactory performance or hedonic preferences across the globe, the aspects of a given culture as well as culturally universal individual differences affecting odor awareness in human social life remain unknown. Here, we conducted a large-scale analysis of data collected from 10 794 participants from 52 study sites from 44 countries all over the world. The aim of our research was to explore the potential individual and country-level correlates of odor awareness in the social context. The results show that the individual characteristics were more strongly related than country-level factors to self-reported odor awareness in different social contexts. A model including individual-level predictors (gender, age, material situation, education, and preferred social distance) provided a relatively good fit to the data, but adding country-level predictors (Human Development Index, population density, and average temperature) did not improve model parameters. Although there were some cross-cultural differences in social odor awareness, the main differentiating role was played by the individual differences. This suggests that people living in different cultures and different climate conditions may still share some similar patterns of odor awareness if they share other individual-level characteristics.
    Matched MeSH terms: Olfactory Perception/physiology*
  20. Mustafar F, Harvey MA, Khani A, Arató J, Rainer G
    eNeuro, 2018 07 11;5(4).
    PMID: 30073190 DOI: 10.1523/ENEURO.0167-18.2018
    Our understanding of the neurobiological underpinnings of learning and behavior relies on the use of invasive techniques, which necessitate the use of animal models. However, when different species learn the same task, to what degree are they actually producing the same behavior and engaging homologous neural circuitry? This question has received virtually no recent attention, even as the most powerful new methodologies for measuring and perturbing the nervous system have become increasingly dependent on the use of murine species. Here, we test humans, rats, monkeys, and an evolutionarily intermediate species, tree shrews, on a three alternative, forced choice, visual contrast discrimination task. As anticipated, learning rate, peak performance, and transfer across contrasts was lower in the rat compared to the other species. More interestingly, rats exhibited two major behavioral peculiarities: while monkeys and tree shrews based their choices largely on visual information, rats tended to base their choices on past reward history. Furthermore, as the task became more difficult, rats largely disengaged from the visual stimulus, reverting to innate spatial predispositions in order to collect rewards near chance probability. Our findings highlight the limitation of muridae as models for translational research, at least in the area of visually based decision making.
    Matched MeSH terms: Visual Perception/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links