Displaying publications 1 - 20 of 82 in total

Abstract:
Sort:
  1. Sulaiman S, Jeffery J, Sohadi AR, Yunus H, Busparani V, Majid R
    Acta Trop, 1990 May;47(4):189-95.
    PMID: 1973019
    There was high mortality in late larval instars of Aedes albopictus (Skuse) from laboratory and field populations in the 24 h after application of three Bactimos formulations of Bacillus thuringiensis H-14. Mortalities were higher and residual effects longer in field populations than in laboratory ones. Briquets were the most effective formulation (mortality 96-100% after five weeks; 76-92% after eight weeks). Culex quinquefasciatus Say larvae were tested only against the briquet formulation. In the laboratory, 100% mortality of late instars persisted for six weeks and dropped to 48-88% after eight weeks. In the field, late instars were reduced by 62-87% after 24 h and 69-72% after one week compared to increases in an untreated population of 160% and 176% respectively.
    Matched MeSH terms: Pest Control, Biological*
  2. Gay H
    Ambix, 2012 Jul;59(2):88-108.
    PMID: 23057183
    The use of chemical pesticides increased considerably after World War II, and ecological damage was noticeable by the late 1940s. This paper outlines some ecological problems experienced during the post-war period in the UK, and in parts of what is now Malaysia. Also discussed is the government's response. Although Rachel Carson's book, Silent Spring (1962), was important in bringing the problems to a wider public, she was not alone in sounding the alarm. Pressure from the public and from British scientists led, among other things, to the founding of the Natural Environment Research Council in 1965. By the 1970s, environmentalism was an important movement, and funding for ecological and environmental research was forthcoming even during the economic recession. Some of the recipients were ecologists working at Imperial College London. Moved by the political climate, and by the evidence of ecological damage, they carried out research on the biological control of insect pests.
    Matched MeSH terms: Pest Control, Biological/history*; Pest Control, Biological/methods; Pest Control, Biological/standards
  3. Kawalek MD, Benjamin S, Lee HL, Gill SS
    Appl Environ Microbiol, 1995 Aug;61(8):2965-9.
    PMID: 7487029
    A new mosquitocidal Bacillus thuringiensis subsp., jegathesan, has recently been isolated from Malaysia. Parasporal crystal inclusions were purified from this strain and bioassayed against fourth-instar larvae of Culex quinquefasciatus, Aedes aegypti, Aedes togoi, Aedes albopictus, Anopheles maculatus, and Mansonia uniformis. The 50% lethal concentration of crystal inclusions for each species was 0.34, 8.08, 0.34, 17.59, 3.91, and 120 ng/ml, respectively. These values show that parasporal inclusions from this new subspecies have mosquitocidal toxicity comparable to that of inclusions isolated from B. thuringiensis subsp. israelensis. Solubilized and chymotrypsin-activated parasporal inclusions possessed low-level hemolytic activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the crystals were composed of polypeptides of 77, 74, 72, 68, 55, 38, 35, 27, and 23 kDa. Analysis by Western blotting (immunoblotting) with polyclonal antisera raised against toxins purified from B. thuringiensis subsp. israelensis reveals that proteins in parasporal inclusions of subsp. jegathesan are distinct, because little cross-reactivity was shown. Analysis of the plasmid content of B. thuringiensis subsp. jegathesan indicates that the genes for toxin production may be located on 105- to 120-kb plasmids. Cry- clones that have been cured of these plasmids are nontoxic. Southern blot analysis of plasmid and chromosomal DNA from subsp. jegathesan showed little or low homology to the genes coding for CryIVA, CryIVB, and CryIVD from B. thuringiensis subsp. israelensis.
    Matched MeSH terms: Pest Control, Biological
  4. Sayyed AH, Raymond B, Ibiza-Palacios MS, Escriche B, Wright DJ
    Appl Environ Microbiol, 2004 Dec;70(12):7010-7.
    PMID: 15574894
    The long-term usefulness of Bacillus thuringiensis Cry toxins, either in sprays or in transgenic crops, may be compromised by the evolution of resistance in target insects. Managing the evolution of resistance to B. thuringiensis toxins requires extensive knowledge about the mechanisms, genetics, and ecology of resistance genes. To date, laboratory-selected populations have provided information on the diverse genetics and mechanisms of resistance to B. thuringiensis, highly resistant field populations being rare. However, the selection pressures on field and laboratory populations are very different and may produce resistance genes with distinct characteristics. In order to better understand the genetics, biochemical mechanisms, and ecology of field-evolved resistance, a diamondback moth (Plutella xylostella) field population (Karak) which had been exposed to intensive spraying with B. thuringiensis subsp. kurstaki was collected from Malaysia. We detected a very high level of resistance to Cry1Ac; high levels of resistance to B. thuringiensis subsp. kurstaki Cry1Aa, Cry1Ab, and Cry1Fa; and a moderate level of resistance to Cry1Ca. The toxicity of Cry1Ja to the Karak population was not significantly different from that to a standard laboratory population (LAB-UK). Notable features of the Karak population were that field-selected resistance to B. thuringiensis subsp. kurstaki did not decline at all in unselected populations over 11 generations in laboratory microcosm experiments and that resistance to Cry1Ac declined only threefold over the same period. This finding may be due to a lack of fitness costs expressed by resistance strains, since such costs can be environmentally dependent and may not occur under ordinary laboratory culture conditions. Alternatively, resistance in the Karak population may have been near fixation, leading to a very slow increase in heterozygosity. Reciprocal genetic crosses between Karak and LAB-UK populations indicated that resistance was autosomal and recessive. At the highest dose of Cry1Ac tested, resistance was completely recessive, while at the lowest dose, it was incompletely dominant. A direct test of monogenic inheritance based on a backcross of F1 progeny with the Karak population suggested that resistance to Cry1Ac was controlled by a single locus. Binding studies with 125I-labeled Cry1Ab and Cry1Ac revealed greatly reduced binding to brush border membrane vesicles prepared from this field population.
    Matched MeSH terms: Pest Control, Biological*
  5. Sayyed AH, Haward R, Herrero S, Ferré J, Wright DJ
    Appl Environ Microbiol, 2000 Apr;66(4):1509-16.
    PMID: 10742234
    Four subpopulations of a Plutella xylostella (L.) strain from Malaysia (F(4) to F(8)) were selected with Bacillus thuringiensis subsp. kurstaki HD-1, Bacillus thuringiensis subsp. aizawai, Cry1Ab, and Cry1Ac, respectively, while a fifth subpopulation was left as unselected (UNSEL-MEL). Bioassays at F(9) found that selection with Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai gave resistance ratios of >95, 10, 7, and 3, respectively, compared with UNSEL-MEL (>10,500, 500, >100, and 26, respectively, compared with a susceptible population, ROTH). Resistance to Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai in UNSEL-MEL declined significantly by F(9). The Cry1Ac-selected population showed very little cross-resistance to Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai (5-, 1-, and 4-fold compared with UNSEL-MEL), whereas the Cry1Ab-, B. thuringiensis subsp. kurstaki-, and B. thuringiensis subsp. aizawai-selected populations showed high cross-resistance to Cry1Ac (60-, 100-, and 70-fold). The Cry1Ac-selected population was reselected (F(9) to F(13)) to give a resistance ratio of >2,400 compared with UNSEL-MEL. Binding studies with (125)I-labeled Cry1Ab and Cry1Ac revealed complete lack of binding to brush border membrane vesicles prepared from Cry1Ac-selected larvae (F(15)). Binding was also reduced, although less drastically, in the revertant population, which indicates that a modification in the common binding site of these two toxins was involved in the resistance mechanism in the original population. Reciprocal genetic crosses between Cry1Ac-reselected and ROTH insects indicated that resistance was autosomal and showed incomplete dominance. At the highest dose of Cry1Ac tested, resistance was recessive while at the lowest dose it was almost completely dominant. The F(2) progeny from a backcross of F(1) progeny with ROTH was tested with a concentration of Cry1Ac which would kill 100% of ROTH moths. Eight of the 12 families tested had 60 to 90% mortality, which indicated that more than one allele on separate loci was responsible for resistance to Cry1Ac.
    Matched MeSH terms: Pest Control, Biological*
  6. Subramaniam TS, Lee HL, Ahmad NW, Murad S
    Biotechnol J, 2012 Nov;7(11):1323-7.
    PMID: 23125042 DOI: 10.1002/biot.201200282
    On December 21, 2010, 6000 genetically modified (GM) mosquitoes were released in an uninhabited forest in Malaysia. The purpose of the deliberate release was a limited “marked release and recapture” (MRR) experiment, a standard ecological method in entomology, to evaluate under field conditions, the flight distance and longevity of the sterile male Aedes aegypti strain OX513A(My1), a GM strain. As with any other GM technologies, the release was received with mixed responses. As the scientific community debate over the public engagement strategies for similar GM releases, dengue incidence continues to rise with a heavy toll on morbidity, mortality and healthcare budgets. Meanwhile the wild female Aedes aegypti continues to breed offspring, surviving and evading conventional interventions for vector control.
    Matched MeSH terms: Pest Control, Biological/methods*
  7. Triantafillou P
    Comp Stud Soc Hist, 2001;43(1):193-221.
    PMID: 17941160
    Matched MeSH terms: Pest Control, Biological/economics; Pest Control, Biological/history; Pest Control, Biological/legislation & jurisprudence
  8. Holzner A, Ruppert N, Swat F, Schmidt M, Weiß BM, Villa G, et al.
    Curr Biol, 2019 10 21;29(20):R1066-R1067.
    PMID: 31639346 DOI: 10.1016/j.cub.2019.09.011
    Conversion of tropical forests into oil palm plantations reduces the habitats of many species, including primates, and frequently leads to human-wildlife conflicts. Contrary to the widespread belief that macaques foraging in the forest-oil palm matrix are detrimental crop pests, we show that the impact of macaques on oil palm yield is minor. More importantly, our data suggest that wild macaques have the potential to act as biological pest control by feeding on plantation rats, the major pest for oil palm crops, with each macaque group estimated to reduce rat populations by about 3,000 individuals per year (mitigating annual losses of 112 USD per hectare). If used for rodent control in place of the conventional method of poison, macaques could provide an important ecosystem service and enhance palm oil sustainability.
    Matched MeSH terms: Pest Control, Biological/methods*
  9. Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV, Golding N, et al.
    Curr Biol, 2019 Dec 16;29(24):4241-4248.e5.
    PMID: 31761702 DOI: 10.1016/j.cub.2019.11.007
    Dengue has enormous health impacts globally. A novel approach to decrease dengue incidence involves the introduction of Wolbachia endosymbionts that block dengue virus transmission into populations of the primary vector mosquito, Aedes aegypti. The wMel Wolbachia strain has previously been trialed in open releases of Ae. aegypti; however, the wAlbB strain has been shown to maintain higher density than wMel at high larval rearing temperatures. Releases of Ae. aegypti mosquitoes carrying wAlbB were carried out in 6 diverse sites in greater Kuala Lumpur, Malaysia, with high endemic dengue transmission. The strain was successfully established and maintained at very high population frequency at some sites or persisted with additional releases following fluctuations at other sites. Based on passive case monitoring, reduced human dengue incidence was observed in the release sites when compared to control sites. The wAlbB strain of Wolbachia provides a promising option as a tool for dengue control, particularly in very hot climates.
    Matched MeSH terms: Pest Control, Biological/methods*
  10. Lakxmy AP, Xavier R, Reenajosephine CM, Lee YW, Marimuthu K, Kathiresan S, et al.
    Eur Rev Med Pharmacol Sci, 2011 Feb;15(2):149-55.
    PMID: 21434481
    To evaluate the mosquito larvicidal potential of the native Bacillus thuringiensis isolate BtReXO2, which was isolated from a tropical rain forest ecosystem in Malaysia. This study also aimed at determining the phenotypic and biochemical characteristics of the isolate.
    Matched MeSH terms: Pest Control, Biological*
  11. Lie KJ
    Exp Parasitol, 1973 Apr;33(2):343-9.
    PMID: 4706117
    Matched MeSH terms: Pest Control, Biological*
  12. Suely A, Zabed H, Ahmed AB, Mohamad J, Nasiruddin M, Sahu JN, et al.
    Fish Physiol Biochem, 2016 Apr;42(2):431-44.
    PMID: 26501361 DOI: 10.1007/s10695-015-0149-3
    Increasing demand for eco-friendly botanical piscicides and pesticides as replacements for harmful synthetic chemicals has led to investigation of new sources of plant materials. Stem bark of Terminalia arjuna, which has been used as a popular folk medicine since ancient time, was examined for its piscicidal activity. This study aims to determine toxicity of ethanol extract of T. arjuna bark on fresh water stinging catfish (Heteropneustes fossilis), along with evaluation of changes in hematological parameters of the fishes exposed to a lethal concentration. The percent mortality of fishes varied significantly in response to concentrations of the extract and exposure times (between exposure time F = 36.57, p < 0.001; between concentrations F = 39.93, p < 0.001). The lethal concentrations (LC50) of ethanol extract were found to be 12.7, 8.94, 5.63 and 4.71 mg/l for 24, 48, 72 and 96 h, respectively. During acute toxicity test, blood samples of treatment fishes showed significant decreases in the red blood cells count, hematocrit content, hemoglobin concentration, mean corpuscular hemoglobin concentration and plasma protein level when compared to those of the control group, while there were significant increases in the mean corpuscular volume, mean corpuscular hemoglobin, white blood cells count and plasma glucose concentration. These results suggest that T. arjuna bark extract could be considered as a potent piscicide due to its toxic effect on fish, particularly fish hematology.
    Matched MeSH terms: Pest Control, Biological
  13. Abu Bakar UK, Pillai V, Hashim M, Daud HM
    Food Nutr Bull, 2005 Dec;26(4):432-5.
    PMID: 16465992
    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers.
    Matched MeSH terms: Pest Control, Biological
  14. Jamian S, Norhisham A, Ghazali A, Zakaria A, Azhar B
    Insect Sci, 2017 Apr;24(2):285-294.
    PMID: 26712127 DOI: 10.1111/1744-7917.12309
    Integrated pest management (IPM) is widely practiced in commercial oil palm agriculture. This management system is intended to minimize the number of attacks by pest insects such as bagworms on crops, as well as curb economic loss with less dependency on chemical pesticides. One practice in IPM is the use of biological control agents such as predatory insects. In this study, we assessed the response of predatory natural enemies to pest outbreak and water stress, and document the habitat associations of potential pest predators. The abundances of 2 predatory insect species, namely Sycanus dichotomus and Cosmolestes picticeps (Hemiptera: Reduviidae), were compared bagworm outbreak sites and nonoutbreak sites within oil palm plantations. We also examined habitat characteristics that influence the abundances of both predatory species. We found that the abundance of C. picticeps was significantly higher in bagworm outbreak sites than in nonoutbreak sites. There were no significant differences in the abundance of S. dichotomus among outbreak and non-outbreak sites. Both species responded negatively to water stress in oil palm plantations. Concerning the relationship between predatory insect abundance and in situ habitat quality characteristics, our models explained 46.36% of variation for C. picticeps and 23.17% of variation for S. dichotomus. Both species of predatory insects thrived from the planting of multiple beneficial plants in oil palm plantations. The results suggest that C. picticeps can be used as a biological agent to control bagworm populations in oil palm plantations, but S. dichotomus has no or little potential for such ecosystem service.
    Matched MeSH terms: Pest Control, Biological/methods*
  15. Larsen M
    J Anim Sci, 2006 Apr;84 Suppl:E133-9.
    PMID: 16582084
    In a world in which sheep producers are facing increasing problems due to the rapid spread of anthelmintic resistance, the battle against gastrointestinal parasitic nematodes is a difficult one. One of the potential new tools for integrated control strategies is biological control by means of the nematode-destroying microfungus Duddingtonia flagrans. This fungus forms sticky traps that catch developing larval stages of parasitic nematodes in the fecal environment. When resting spores (chlamydospores) of this fungus are fed daily to grazing animals for a period of time, the pasture infectivity and thus, the worm burden of grazing animals are lowered, especially in young lambs. Research has been conducted throughout the world covering many different climates and management systems. An Australian parasite model showed that if the fungus performs efficiently (> or =90% reduction in worm burden) for 2 or 3 mo, it should contribute significantly to a reduction in the number of dead lambs otherwise occurring when managed only by anthelmintic treatment and grazing management. Feeding or field trials have clearly demonstrated that dosing with a few hundred thousand spores per kilogram of live BW not only reduced the number of infective larvae but also increased the BW of the lambs compared with controls not given fungus. Initial Australian work with feeding spores by means of a block formulation or a slow-release device has shown some promise, but further work is needed to fully develop these delivery systems. In tropical Malaysia, small paddock trials and field studies resulted in significant improvements, in terms of lower worm burdens and increased live BW, when feeding half a million spores daily to grazing lambs. Additional benefits have been observed when the fungus is employed in combination with a fast rotational grazing system. Research has also demonstrated that spores can be delivered in slightly moist feed block material, but only if such blocks are consumed rapidly, because of their very short shelf life. In the northern, temperate Danish climate it has been demonstrated that daily feeding of half a million spores per kilogram of live BW can lead to significant production benefits, with increased live BW gain in fungus-exposed animals. Biological control of parasitic nematodes in sheep seems to hold promise for the future, but to be able to assist producers, the optimal delivery system needs to be refined and further developed. In addition, more work will be needed to define the best use of this technology in different geographic regions.
    Matched MeSH terms: Pest Control, Biological/methods*
  16. Wee SL, Tan KH
    J Chem Ecol, 2005 Apr;31(4):845-58.
    PMID: 16124255 DOI: 10.1007/s10886-005-3548-6
    Bactrocera carambolae and B. papayae are major fruit fly pests and sympatric sibling species of the B. dorsalis complex. They possess distinct differences in male pheromonal components. In the 1990's, wild Bactrocera fruit flies with morphological traits intermediate between those of B. carambolae and B. papayae were often captured in traps baited with methyl eugenol (ME). Chemical analyses of rectal glands of ME-fed males revealed that the laboratory Fl, F2, and backcross hybrids possessed ME-derived sex pheromonal components ranging from that typical of B. papayae to that of B. carambolae without any specific trend, which included a combination of pheromonal components from both parental species within an individual hybrid. ME-fed hybrids without any ME-derived pheromonal components were also detected. Further chemical analysis of rectal glands from wild Bactrocera males, after ME feeding in the laboratory, showed a combination of pheromonal components similar to that found in the ME-fed, laboratory-bred hybrids. These findings present circumstantial evidence for the occurrence of a natural hybrid of the two Bactrocera species.
    Matched MeSH terms: Pest Control, Biological
  17. Jalinas J, Güerri-Agulló B, Mankin RW, López-Follana R, Lopez-Llorca LV
    J Econ Entomol, 2015 Apr;108(2):444-53.
    PMID: 26470155 DOI: 10.1093/jee/tov023
    Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) is an economically important pest of palm trees in the subtropics. Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Clavicipitaceae), has been shown to be pathogenic against R. ferrugineus in laboratory and field studies. However, because they remain inside the trunks until adulthood, the slowing of feeding and increases in mortality of internally feeding R. ferrugineus larvae over time after B. bassiana treatment has not been established. To explore the potential of acoustic methods to assess treatment effects, sound impulses produced by untreated, 10(4)-, and 10(6)-conidia ml(-1) B. bassiana-treated larvae in palms were recorded for 23 d, after which the palms were dissected and the larvae examined. Analyses were performed to identify trains of impulses with characteristic patterns (bursts) produced frequently by moving and feeding larvae but only rarely (3-8% of the larval rate) by interfering background noise or tree vibrations. The rates of bursts, the counts of larval impulses per burst, and the rates of impulses in bursts decreased significantly over time in both B. bassiana treatments but not in the control. This supports a hypothesis that larvae had briefer movement and feeding bouts as they became weaker after infection, which reduced the counts of larval impulses per burst, the rates of bursts, and the rates of impulses in bursts. There is considerable potential for use of acoustic methods as tools for nondestructive assessment of effects of biological control treatments against internally feeding insect pests.
    Matched MeSH terms: Pest Control, Biological*
  18. Tee HS, Saad AR, Lee CY
    J Econ Entomol, 2011 Dec;104(6):2031-8.
    PMID: 22299367
    The objective of this study was to evaluate the potential of Aprostocetus hagenowii (Ratzeburg) (Hymenoptera: Eulophidae) to control American cockroaches, Periplaneta americana (L.) (Dictyoptera: Blattidae), in sewer manholes and in crevices around buildings. Parasitoids were released weekly for 12 wk from laboratory parasitized heat-killed oothecae, and parasitism monitored using sentinel oothecae of American cockroaches. In addition, preference of A. hagenowii for 1- to 4-wk-old oothecae was evaluated in the laboratory. A. hagenowii females showed no preference for any ootheca age. Twenty of the 30 tested females parasitized one ootheca, whereas the other 10 parasitized two oothecae. The total progeny (males, females, and total) that emerged from a single ootheca parasitized by a female was not significantly different to the total progeny that emerged from two oothecae parasitized by a female. The number of males, females, and total progeny that emerged from the second parasitized ootheca was significantly less than the number that emerged from the first parasitized ootheca. The weekly mean sentinel oothecal parasitism rate in wall crevices was 18.1 +/- 3.2% and in sewer manholes was 13.3 +/- 2.0%. The mean number of released A. hagenowii females per number of parasitized sentinel oothecae recorded in crevices was 189 +/- 18, whereas it was 428 +/- 50 in sewers. A. hagenowii females were more effective at parasitizing sentinel oothecae placed at high and middle levels in manholes than at a low level when releases were made at the midpoint of the manhole shaft.
    Matched MeSH terms: Pest Control, Biological/methods*
  19. Ishak I, Ng LC, Haris-Hussain M, Jalinas J, Idris AB, Azlina Z, et al.
    J Econ Entomol, 2020 02 08;113(1):43-49.
    PMID: 31586213 DOI: 10.1093/jee/toz233
    Metarhizium anisopliae Metchnikoff (Hypocreales: Clavicipitaceae) is a fungal pathogen that causes disease in various insect pests, and it can be exploited and developed as a biological control agent to combat the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). The study on indigenous isolates is crucial especially for development of bioinsecticides in the future. The M. anisopliae strain called MET-GRA4 was tested for pathogenicity against adult red palm weevil and treated in vitro with different spore viabilities. The isolates exhibited pathogenicity with 100% mortality 21 d postinfection. The median lethal time (LT50) for 85% viable spores was 8.6 d, while 39% viable spores had an LT50 value of 21.37 d, with 92 and 16.6% mycosis, respectively. The species MET-GRA4 strain was molecularly characterized using ITS1 and ITS4 from pure culture (Isolate A), mass-produced spores (Isolate B), and infected red palm weevil cadavers (Isolate C). The DNA sequences obtained matched M. anisopliae sequences, with 99% similarity. This new isolate of M. anisopliae has potential as a targeted bioinsecticide for management of red palm weevil.
    Matched MeSH terms: Pest Control, Biological
  20. Getha K, Vikineswary S
    J Ind Microbiol Biotechnol, 2002 Jun;28(6):303-10.
    PMID: 12032802
    Fusarium oxysporum f.sp. cubense is the causal pathogen of wilt disease of banana. A cost-effective measure of control for this disease is still not available. Streptomyces violaceusniger strain G10 acts as an antifungal agent antagonistic towards many different phytopathogenic fungi, including different pathogenic races of the Fusarium wilt pathogen. In an attempt to understand the mode of action of this antagonist in nature, the interaction between S. violaceusniger strain G10 and F. oxysporum f.sp. cubense was first studied by paired incubation on agar plates. Evidence for the in vitro antibiosis of strain G10 was demonstrated by inhibition zones in the "cross-plug" assay plates. Microscopic observations showed lysis of hyphal ends in the inhibited fungal colonies. Culture of strain G10 in liquid media produces antifungal metabolites, which showed in vitro antagonistic effects against F. oxysporum f.sp. cubense such as swelling, distortion and excessive branching of hyphae, and inhibition of spore germination. An indirect method was used to show that antibiosis is one of the mechanisms of antagonism by which strain G10 acts against F. oxysporun f.sp. cubense in soil. This study suggests the potential of developing strain G10 for the biological control of Fusarium wilt disease of banana.
    Matched MeSH terms: Pest Control, Biological
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links